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Abstract—Rapid single-flux quantum (RSFQ) is one of the
most advanced superconducting technologies with the potential
to supplement or replace conventional VLSI systems. However,
scaling RSFQ systems up to VLSI complexity is challenging
due to fundamental differences between RSFQ and CMOS
technologies. Due to the pulse-based nature of the technology,
RSFQ systems require gate-level pipelining. Moreover, logic gates
have an extremely limited driving capacity. Path balancing and
clock distribution constitute a major overhead, often doubling
the size of circuits. Gate compounding is a novel technique that
substantially enriches the functionality realizable within a single
clock cycle. However, standard logic synthesis tools do not support
its specific synchronization constraints. In this paper, we build
first a database of minimum-area compound gates covering all the
Boolean functions up to 4 variables and all possible input arrival
patterns. Then, we propose a technology mapping method for
RSFQ circuits that exploits compound gates using the database
as a cell library. We evaluate our framework over the EPFL and
ISCAS benchmark circuits. Our results show, on average, a 33%
lower logic depth with 24% smaller area, as compared to the
state of the art.

I. INTRODUCTION

Rapid Single-Flux Quantum (RSFQ) [1] is one of the most
promising beyond-CMOS technologies. RSFQ systems consis-
tently achieve operating frequencies on the order of tens of
gigahertz [2]–[4], with particular cells operating at hundreds
of gigahertz [5]–[7]. Furthermore, the operating power of the
RSFQ systems is two to three orders of magnitude smaller
than CMOS, even considering the refrigeration power [8].

However, achieving the aforementioned advantages at scale
remains a challenge. Unlike CMOS, most RSFQ logic gates
operate as latches with one clock input and one or more data
inputs [9]. Arrival of a single-flux quantum (SFQ) pulse at the
data input changes the internal state of the gate. The presence
or absence of an SFQ pulse within the clock period represents
logical 1 or 0, respectively. The clock pulse resets the gate to
initial state, potentially releasing an SFQ pulse. This reliance on
the clock signal requires SFQ circuits to be pipelined at the gate
level. To ensure a correct data propagation, i.e., correct data
arrives in the correct time frame, path balancing is required, as
shown by the two path-balancing D-flip-flops (DFF) in Fig. 1b.
Furthermore, due to the quantized nature of SFQ pulses, most
RSFQ primitives have a maximum driving capacity of one gate.
Consequently, a special cell called splitter is used to duplicate
signals [9], [10], as illustrated in Fig. 1.

Despite the advances in RSFQ technology mapping [11],
[12], the number of path-balancing DFFs and splitters can be
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prohibitively large, degrading the area and yield of an integrated
system [13]. Different approaches have been proposed in the
literature to tackle this fundamental issue. In [11], the number
of path-balancing DFFs is reduced using dynamic programming,
yielding, on average a 12% smaller area. Further reductions in
path-balancing overhead is achieved by using dual clocking,
where high- and low- frequency clock signals are used [14].
This technique however requires relatively expensive NDRO
DFFs along with the duplication of the clock distribution
network.

Different techniques to reduce the number of clocked
elements are proposed in the literature [15], [16]. In dynamic
SFQ (DSFQ) the gates reset to the initial state after the specified
period of time [17]. The design of DSFQ circuits is therefore
similar to CMOS circuits where large combinational blocks can
be synchronized using relatively few synchronous elements [10].
A similar approach based on clockless logic gates is proposed
in [2]. Based on nondestructive readout (NDRO) flip-flops,
two additional clockless cells, namely the NIMPLY (¬x0 ∧ x1)
and the AND functions, are efficiently realized using fewer
clocked elements for synchronization. The advantages of these
approaches are smaller area, lower clock network complexity,
and simpler path balancing, as compared to conventional RSFQ.
The timing constraints, however, constitute a major challenge.
In DSFQ, the interaction between the input skew tolerance,
clock frequency, and bias margins [10] complicates the circuit
design. The NDRO-based clockless gates are particularly
sensitive to the arrival time of the inputs, necessitating careful
timing analysis [18].

The gate compounding technique has been recently proposed
as an alternative strategy to reduce the number of clocked
elements [19]. Unlike DSFQ and clockless gates, compound
gates (logic gates obtained by gate compounding) are not
sensitive to the arrival of the inputs, reducing the complexity
of the system design process. The functionality achievable
within a single clock cycle is enriched by exploiting RSFQ
synchronization mechanisms. Gate compounding can signif-
icantly reduce the pipeline depth and number of clocked
elements, not only improving the latency and area of a
functional circuit, but also reducing the size of the clock
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Fig. 1. a) An example of a CMOS circuit. b) Equivalent RSFQ circuit with a
splitter and two path-balancing DFFs.979-8-3503-2599-7/23/$31.00 ©2023 IEEE



distribution network. However, due to complex synchronization
requirements, traditional technology mapping tools are not
directly applicable.

In this work, inspired by [20]–[22], we present a technology
mapping method for SFQ compound gates based on a pre-
computed database. Using enumeration, we generate function-
ally correct and area-optimal compound gates for all functions
up to four variables and all possible input arrival patterns. Next,
we utilize these gates as cells during technology mapping to
synthesize large scale SFQ circuits. In the experimental results,
we show a drastic reduction in the area and logic depth by
24% and 33%, respectively, compared to the state-of-the-art.

II. GATE COMPOUNDING TECHNIQUE

The gate compounding technique exploits differences in pulse
synchronization mechanisms to reduce the pipeline depth of
an RSFQ circuit. In particular, RSFQ logic gates can be
divided into three categories, namely, AA, AS, and SA, where
the first letter denotes whether input signals should arrive
(a)synchronously, while the second letter indicates whether the
output is released (a)synchronously.

AA elements process the inputs immediately upon arrival and
the output is released without a synchronizing signal (clock).
For instance, a merger cell, often referred to as confluence
buffer (CB), directs signals from multiple (typically two) input
branches into one output branch, i.e., implements an OR function.
Note that the merger produces two subsequent output pulses
if input pulses are temporally separated, or a single pulse, if
input signals arrive simultaneously.

AS elements process the input information immediately upon
arrival and release the output synchronously after the arrival of
the clock signal. The simplest RSFQ component of this type
is D-flip-flop (DFF) that stores an incoming pulse and releases
it upon the arrival of the clock signal. Other important AS
elements are the inverter (NOT) and exclusive-or (XOR).

SA elements require the inputs to arrive simultaneously.
The result of the computation is released immediately after
processing. Assuming inputs arrive simultaneously, a CB can
be tuned to produce at most a single output pulse, producing an
OR element [23]. Furthermore, by adjusting the JJ size and bias
current, the OR structure can be transformed into AND element.
Note that, unlike conventional RSFQ, OR and AND elements are
not clocked and require inputs to arrive simultaneously.

These three categories of components govern the flow of data
within an RSFQ circuit. Most importantly, the SA components
ensure simultaneous release of the SFQ pulses. Therefore, SA
components can only be placed directly after the AS elements.
To comply with these restrictions, the gate compounding
technique was proposed in [19]. A compound SFQ logic gate
can be produced by following the generic structure illustrated in
Fig. 2. Inputs to a compound gate are initially processed by AA
elements. The signals then flow towards the AS components
where the result of a logical operation is stored until the arrival
of the clock signal. The clock signal triggers the simultaneous
release of the data towards the SA elements. Finally, the AA
components complete the function.

The proposed structure offers two major advantages. Since
the initial processing is handled by the AA or AS elements,
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Fig. 2. Generic compound gate structure.

arbitrary order of input arrival is supported, relaxing the timing
constraints of the circuit. The proposed gate compounding
technique significantly expands the set of functions realizable
within a single clock cycle. Using compound gates, for example,
all 16 two-input functions are realized within a single clock
cycle, as compared to only 13 functions in conventional
SFQ [19].

III. BACKGROUND AND NOTATION

A multi-output Boolean function f : Bk 7→ Bm maps k input
signals to m output signals. A single output Boolean function
(m = 1) f : Bk 7→ B can be represented as a truth table with
2k rows. A truth table can be conveniently encoded as a 2k-bit
string Y = y2k−1 . . .y0 where bit yi denotes the output at the
ith row in the truth table. For example, f1(x1,x0) = x1 ⊕ x0

is encoded as Y1 = 01102, since f1(1,1) = 0, f1(1,0) = 1,
f1(0,1) = 1, and f1(0,0) = 0.

A Boolean function1 f can be represented by a Boolean
network2 N = (V = I ∪ O ∪ G, E) — a directed acyclic
graph (DAG) representing the sequence of the Boolean op-
erations applied to realize f . Set G is a set of gates, where
each node u ∈ G applies a function fu to its fanins FI(u) and
passes the result to fanouts FO(u). Set I denotes the set of
primary inputs (PI), i.e., nodes without fanins. Set O denotes
the set of primary outputs (PO), i.e., nodes without fanouts.

A. Delay

In SFQ, the delay is typically expressed in terms of the
number of clock cycles required to realize a function. In
practice, input signals can often arrive at different clock cycles,
as illustrated in Fig. 3a. We define the input level pattern
ℓN =

[
ℓ0, . . . , ℓk−1

]
as a vector of integers describing the

clock cycles during which the PI signals enter the network N .
Without loss of generality, we normalize the input patterns such
that the earliest PI signal arrives at cycle 0, i.e., min(ℓN ) = 0.
For example, an input level pattern ℓN = [0, 1] indicates that
the data from the second PI is delayed by one clock cycle. A
level lu denotes the number of clock cycles between the earliest
PI and node u. The input arrival pattern du =

[
d0u . . . d

k−1
u

]
is the number of clock cycles between u and each PI,

du = [lu − ℓ0, . . . , lu − ℓk−1].

We define two operators to compare the delay patterns of any
two nodes u and v:

du = dv ⇔ ∀i diu = div,

du < dv ⇔ ∃i diu < div and ∄i diu > div.

1For brevity, we use the term function to represent a Boolean function
2We use the terms network and circuit to represent a Boolean network
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Fig. 3. Realization of an XNOR function between networks X and Y. The left
network uses a path-balancing DFF (1) followed by an XNOR with equal delay
pattern (2). This structure requires three clock cycles and 33 JJs. The right
network uses an XNOR element with unequal delay pattern (3), requiring two
clock cycles and 21 JJs.

In the former case, corresponding delays are equal. In the latter
case, the delays of u are not greater than the corresponding
delays of v, but for at least one PI the delay of u is smaller.

B. Cost

The most common metric to evaluate the cost of an SFQ
circuit is the JJ count, which directly correlates with the area
of an SFQ circuit. Let qu be the area cost associated with the
logic primitive implemented by a node u. The area cost c(N )
of a circuit N is the sum of costs qu for each node u ∈ G. A
transitive fanin cone TFI(u) is defined as the set of all nodes
having a path to u. The area cost cu of a node u is defined
as the cost of its TFI . Note that cu differs from qu, since qu
defines the cost of a single primitive, while cu is the sum of
costs of all ancestors of u. Suppose nodes u, v are fanins of
node w. The cost of the node w is,

cw = qw + S(u, v),

S(u, v) =
∑

n∈TFI(u)∪TFI(v)

[qn + qs max (|FO(n)| − 1, 0)] ,

where qs is the cost of splitter.
An SFQ circuit should comply with specific technological

constrains, such as path balancing and fanout constraints in SFQ.
With SFQ gate compounding, gates also follow the structure
described in Fig. 2 to avoid the data hazards described in the
upcoming subsection.

C. Data hazards

1) Double pulse hazard. If two pulses entering a CB are
sufficiently spaced in time, two subsequent SFQ pulses are
generated at the output, potentially producing an error. For
instance, a double pulse produced by a CB entering a XOR
may trigger unwanted switching, producing incorrect result. In
particular, the internal storage loop within a XOR is toggled
one additional time between 0 or 1 by the input pulses.
Nevertheless, if the CB has its output pin connected to a
DFF or an inverter, the second pulse has no effect on the
system [9].

Consider the circuit implementing (A ∨B)⊕ C shown in
Fig. 4. The storage loop within the XOR element is correctly
switched and reset with pulses A and C. The pulse B, however,
sets the storage loop to state 1, producing an incorrect result.
To avoid this data hazard, the XOR component is placed after a
CB only if the CB is guaranteed to produce at most one SFQ
pulse, i.e., the inputs to a CB are never simultaneously equal
to 1.
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Fig. 4. Incorrect realization of (A∨ B)⊕ C function using a CB and an XOR.
The main loop within an XOR element is set to 1 by A, reset to 0 by C, and
subsequently set to 1 by pulse B, incorrectly producing an output pulse.
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Fig. 5. a) A system violating the compound gate structure. Any AA element
(splitter) between AS (DFF) and SA (AND) elements may desynchronize the
input arrival. b) The issue is resolved by moving the splitter before the AS
elements.

To identify the condition where a CB can produce two pulses,
we assign a hazard flag hn to each node n. If n is not a CB,
hn is 0; otherwise,

hn = hu ∨ hv ∨ δ(Yu ∧ Yv),

where u, v ∈ FI(n) and δ(Y) = 1 only if Y is nonzero.
For example, consider nodes u, v, w, with Yu = 10102,

Yv = 00012, Yw = 11002, and hu = hv = hw = 0. Connecting
u and v to a CB produces node p that can be used with XOR,
since hu = hv = 0 and
δ(Yu ∧ Yv) = δ(10102 ∧ 00012) = δ(00002) = 0 ⇒ hp = 0,

i.e., the u and v are never simultaneously equal to 1. In contrast,
connecting u and w to a CB produces node q that cannot be
used with XOR, since
δ(Yp ∧ Yw) = δ(10102 ∧ 11002) = δ(10002) = 1 ⇒ hq = 1.

Suppose node r is produced by connecting q and v to a CB.
Although δ(Yq ∧ Yv) = 0, node r cannot be used with XOR
since hq = 1 ⇒ hr = 1.

2) Desynchronization hazard. The signal desynchronization
is a timing hazard where the inputs cannot simultaneously
arrive to an SA element. Consider for example the circuit
illustrated in Fig. 5a. The splitter is placed between the AS
(DFF) and SA (AND) components. Delays a0 → a1 and b0 → b1
are not equal. Therefore, pulses from A and B do not arrive
simultaneously, violating the input timing requirement of the
AND element. Thus, the AND operates as a constant 0.

A possible correction is shown in Fig. 5b. The splitter
is placed before the DFFs to equalize delays a0 → a1 and
b0 → b1. The timing violation is therefore avoided at the cost
of an additional DFF.

IV. LIBRARY CONSTRUCTION

The fixed structure of the compound gates combined with
the hazards described in the previous section complicates the
technology mapping process. For example, AA elements should
be prevented from being placed between AS and SA elements,
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Fig. 6. Example of enumeration with 2 primary inputs represented by truth tables 1100 and 1010. The numbers in brackets represent the cost of a node (in JJ).
The red 1 represents the double pulse hazard. The crossed grey numbers represent the discarded truth tables.

an issue described in section III-C2. Adapting the existing tools
to consider these constraints requires to significantly modify
the underlying algorithms, potentially degrading run time and
quality of results.

Area- or delay-optimal SFQ circuits can be created using
exact synthesis methods, such as Boolean satisfiability [24],
[25] and enumeration [20]. However, exact methods are limited
to small sizes (≤ 16 nodes) and few variables (≤ 6), due to
the computational intractability of the problem. Nevertheless,
exact synthesis can be applied to create a database of optimal
small-scale structures. Since the number of Boolean functions
grows double exponentially with the number of variables (22

k

),
complete databases are typically limited to 4 variables. These
locally-optimal networks are subsequently used to produce
larger networks [20]–[22]. Library-driven approaches have been
successfully applied to MIG resynthesis [21], [22] and AQFP
logic synthesis [20]. The database-driven mapping offers several
advantages:
• Functional correctness. Each circuit block within a database

describes a realization of a logic function complying with the
specific technological constraints. Thus, technology mapping
can safely proceed at the block level, since the technological
requirements are satisfied during the database creation.

• Local optimality. The logic blocks in the database can be
optimized for area or delay.

• Performance. The parameters of each logic block, such as
area and delay, are computed in advance and can be accessed
in constant time during mapping.

• Reuse. Once created, the database can be used multiple times
to synthesize arbitrary SFQ circuits.

In this section, we present the procedure to create a database of
area-optimal compound gate structures for each of the k-input,
single-output Boolean function.

A. Enumeration procedure

The algorithm constructs a Boolean network N = (V, E),
where nodes represent a particular realization of a logic function
using compound gates. Each node u = (Yu, lu, cu,hu) ∈ V is
a 4-tuple of a truth table, level, cost, and hazard flag. The
procedure is initialized with k nodes representing the PIs. For
example, Fig. 6a describes the initialization for k = 2:

a = (11002, 0, 0,0) b = (10102, 0, 0,0)

For completeness, constant true and false are also included.
After initialization, the algorithm cycles through three subrou-
tines, following the compound gate structure in Fig. 2.

1) AA. The stage AAi implements the addition of AA
elements to a compound gate at level i. For each pair of

nodes u = (Yu, i, cu,hu) and v = (Yv, i, cv,hu), a new node
w = (Yu ∨ Yv, i, qCB + S(cu, cv),hw) is produced. Consider
the AA1 stage, illustrated in Fig. 6b, where the new node
w = (11102, 0, 7,1) is discovered. The 7-JJ cost of the node
is the cost of a CB used to realize this function.

2) AS. For each node u = (Yu, i− 1, cu,hu), stage ASi
produces two new nodes,
p = (Yu, i, cu + cDFF,0) and q = (¬Yu, i, cu + cNOT,0),

corresponding to addition of a DFF and NOT element. Note
that the hazard flag is reset to 0, since only a single pulse is
produced by the AS elements. In addition, for each pair of
nodes u = (Yu, i− 1, cu,0) and v = (Yv, i− 1, cv,0), whose
hazard flag is 0, a new node is produced

r = (Yu ⊕ Yv, i, qXOR + S(cu, cv),0).

In Fig. 6c, three new nodes are produced by a DFF, while
four new truth tables are discovered by applying NOT and XOR
operations. Note that the node w is not used with XOR due to
the hazard flag hw = 1.

3) SA. After the AS stage, inputs are synchronized enabling
the use of SA gates. At stage SAi, each pair of nodes
u = (Yu, i, cu,0) and v = (Yv, i, cv,0) produces 2 new nodes

p = (Yu ∧ Yv, i, qAND + S(cu, cv),0), and
q = (Yu ∨ Yv, i, qOR + S(cu, cv),0).

In Fig. 6d, the outputs of the AS1 stage proceed to the SA1
stage where the logical AND and OR are applied to the outputs
of the previous stage. The 6 nodes implementing previously
undiscovered functions with smallest cost are added to the
network, while 36 nodes are discarded.

The algorithm repeats these three stages
(AAi−1 → ASi → SAi → AAi → . . .) until all 22

k

k-input
functions are realized. In our example for k = 2, after stage
SA1 the algorithm proceeds to stage AA1, where 78 nodes
are produced, of which only a single node implements the
remaining function 10012. After this stage, all of the 22

2

= 16
two-input truth tables are discovered and the enumeration
process is terminated.

B. Filtering

During the enumeration process, the size of the network
grows rapidly with each additional stage. In Fig. 6, for example,
only 7 nodes are produced at stage AS1, while 62 nodes are
produced at stage AA1. The number of nodes considered during
enumeration drastically increases with k, with several billions
of nodes processed while enumerating four-input functions. To
limit the number of nodes and prevent inferior nodes from
being added to the database, the dominance relationship is used.
Suppose, the node u implements a Boolean function f with



0,0,0,0 0,0,0,1 0,0,1,1
0,0,0,2 0,0,1,2

0,1,1,1 0,1,1,2
0,0,2,2
0,0,1,3

0,1,2,2
0,1,1,3 0,1,2,3
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Fig. 7. Level patterns considered during enumeration. Due to permutation symmetry, only the sorted level patterns are considered. The process starts with the
pattern (0, 0, 0, 0). In subsequent iterations, the level of one of the PIs is incremented (marked red). If the iteration does not yield any cost- or area-optimal
nodes, the pattern is not incremented (shaded gray).

input arrival pattern du and area cu. Also, suppose another
node v implementing the same function f with input arrival
pattern dv and area cv has previously been discovered. The
node v is said to dominate the node u in two cases,

• faster delay: dv < du and cv ≤ cu;
• lower cost: dv = du and cv < cu.

In these cases, the node u is not created.

C. Input arrival patterns

During initial enumeration, all PIs are placed at equal levels
ℓ = (0, . . . , 0). To consider different input arrival patterns,
the enumeration process is repeated with PIs introduced at
different levels ℓ =

(
ℓ0, . . . , ℓk−1

)
. The number of input level

patterns considered during the enumeration process can be
reduced based on dominance relationship. Suppose that, while
considering the pattern ℓa = (ℓ1, . . . , ℓq, . . . , ℓk), all nodes
were dominated by or equivalent to previously discovered
nodes. The pattern ℓb = (ℓ1, . . . , ℓq + 1, . . . , ℓk) is therefore
unlikely to yield a non-dominated node, due to inferior delay
and cost.

V. TECHNOLOGY MAPPING

We propose a three-stage technology mapping flow to synthe-
size arbitrary Boolean networks using SFQ compound gates.
First, we employ a delay-driven technology mapper that uses
the computed database as a cell library. Due to path balancing,
delay optimization is essential for area reduction in SFQ circuits.
Intuitively, longer critical paths require more DFF elements
due to longer paths to balance [28].

Next, our flow inserts path-balancing DFFs and minimizes
their number using minimum-area retiming [29], which pro-
vides an optimal solution. Note that retiming preserves the
path-balancing constraint since each path traverses the same
number of DFFs before and after retiming.

Finally, splitter cells are inserted to satisfy the driving
capacity constraint. Our synthesis flow has been implemented
using the open-source logic synthesis library mockturtle [30].

VI. EXPERIMENTAL RESULTS

We employed a computing cluster with 48 2.5GHz Intel Xeon
E5-2680 CPUs and 256GB of RAM to create the database.
Due to the computational complexity, we limited the number
of inputs to four, i.e., k = 4. The enumeration process starts
from pattern ℓ0 = (0, 0, 0, 0), i.e., all of the PIs are at the same
level. During the subsequent iterations, the level of one of the
PIs is incremented and the enumeration process is repeated. If
the enumeration does yield to non-dominated nodes, a new PI
level is incremented. Fig. 7 illustrates possible level patterns
considered by the enumeration process.

The computation for the input level pattern ℓ0 = (0, 0, 0, 0)
required seven hours, evaluating over 13 billion nodes. Other
delay patterns required between one to five hours. The resulting
database was created in 52 hours and consisted of 488,636
entries. Next, we filtered entries based on input-permutation
equivalences (P-classes) [31]. Our final database contains
28,258 non-dominated implementations for all the 3,984 P-
classes of Boolean functions up to 4 variables. Each entry
represents a valid RSFQ compound gate. Note again that the
considerable initial runtime for database creation is amortized
by repeated use.

We apply our final database to synthesize a subset of
EPFL [30] and ISCAS [27] benchmark circuits. We compare
our results against PBMap [11], the state-of-the-art dynamic
programming algorithm for path balancing. The results are
shown in Table I. Compared to the state of the art, gate
compounding technique drastically reduces logic depth by an
average of 33%. Due to the use of more expressive compound
gates, the area of the circuits (expressed as total JJ count) is
reduced by an average of 24%, despite 53% larger number of
path-balancing DFFs.

Despite substantial improvements in many benchmarks, our
approach yields a weaker result in dec circuit. The increase in
JJ count can be attributed to two factors. First, the logic depth
of this circuit is only 4 cycles, limiting the impact of compound
gates. Second, the JJ cost of each primitive in the RSFQ library
used in [11] is not openly available at the reference. Likely,
the CONNECT cell library [32] used in this work has a higher

TABLE I
NUMBER OF PATH-BALANCING DFFS, JJS, AND LOGIC DEPTH IN A SUBSET OF EPFL [26] AND ISCAS [27] BENCHMARKS

PBMap [11] Our Work

benchmark #DFF #JJ Depth #DFF Ratio #JJ Ratio Depth Ratio Runtime, s

sin 13,666 215,318 182 17,627 1.29 126,694 0.59 86 0.47 0.399
cavlc 522 16,339 17 987 1.89 15,098 0.92 11 0.65 0.009
dec 8 5,469 4 16 2.00 6,324 1.16 4 1.00 0.006
int2float 270 6,432 16 443 1.64 5,616 0.87 10 0.63 0.004
priority 9,064 102,085 127 14,754 1.63 95,370 0.93 125 0.98 0.013
c499 476 7,758 13 512 1.08 5,593 0.72 8 0.62 0.040
c880 774 12,909 22 1,179 1.52 8,359 0.65 13 0.59 0.013
c1908 696 12,013 20 799 1.15 5,553 0.46 11 0.55 0.025
c3540 1,159 28,300 31 1,556 1.34 22,231 0.79 18 0.58 0.034
c5315 2,908 52,033 23 3,727 1.28 33,524 0.64 13 0.57 0.091
c7552 2,429 48,482 19 4,744 1.95 28,900 0.60 13 0.68 0.115
Average 1.53 0.76 0.67



TABLE II
COMPARISON WITH DCM [14] WITH 1/7 THROUGHPUT ON A SUBSET OF

EPFL [26] AND ISCAS [27] BENCHMARKS

DCM (1/7) [14] Our Work
benchmark #DFF #JJ #DFF Ratio #JJ Ratio
int2float 117 7,770 440 3.76 5,973 0.77
priority 8,562 257,252 14,754 1.72 68,177 0.27
voter 7,204 447,044 8,357 1.16 189,622 0.42
c432 224 10,734 1,180 5.27 6,905 0.64
c880 362 14,658 1,176 3.25 8,650 0.59
c1355 193 8,739 448 2.32 5,703 0.65
c1908 282 13,169 799 2.83 5,497 0.42
c3540 776 43,437 1,554 2.00 20,820 0.48
Average 2.79 0.53

JJ cost for logic primitives compared to [11], contributing to
the area increase.

We also compare our results with the dual clock methodol-
ogy [14]. A logic circuit is partitioned into separate clocking
domains using the NDRO flip flops. Subcircuits within each
partition are clocked at high frequency, while the NDRO
flip flops operate at a frequency 7 times smaller than the
high frequency. The throughput of the system is therefore
reduced by a factor of 7. The results are compared in Table
II. Despite 7 times smaller throughput and 64% fewer DFFs,
the dual clocking method requires almost 2 times more JJs as
compared to gate compounding. In addition, DCM systems
require relatively expensive NDRO DFFs, pulse repeaters and
an additional low-frequency clock distribution network, further
degrading the area of the system.

VII. CONCLUSIONS

RSFQ technology has the potential to enhance power and speed
of the mainstream computing systems by several orders of
magnitude. The gate compounding technique is a novel method
to reduce the logic depth by exploiting the synchronization
mechanisms of RSFQ technology. With more expressive logic
gates, area of the circuits is considerably reduced. In this
paper, we proposed a scalable technology mapping method
that leverages SFQ compound gates. We generated a database
of functionally correct and area-optimal compound gates for
all functions up to 4 variables. Then, we applied a delay-
driven technology mapping using the pre-computed database
as a cell library. In the experimental results, we showed a
substantial reduction in the area and logic depth by 24% and
33%, respectively, compared to the state-of-the-art.
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