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Effective Resistance of Two-Dimensional Truncated
Infinite Mesh Structures
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Abstract— Determining the effective resistance of a mesh is a
powerful tool for simplifying the analysis of complex electrical
structures, ranging from transistors to power delivery systems.
A common structure in science and engineering is a two-
dimensional resistive grid. Applications of this structure include
IR drop analysis and decoupling capacitor allocation in on-chip
power and ground networks in VLSI systems, and the analysis of
electrical and thermal conductive media, such as a semiconductor
substrate. In the case where the effective resistance is evaluated
far from the grid edges, an infinite resistive lattice can be
used to simplify the analysis of a grid. If however the target
nodes are located close to the grid edges, the assumption of
infinite dimensions becomes invalid, producing inaccurate results.
To bridge this gap, a resistive mesh truncated along a single or
two dimensions is discussed here. Integral expressions for the
effective resistance within a truncated infinite mesh structure are
provided, as well as a closed-form approximation, which exhibits
good agreement with the exact integral equation, exhibiting an
average error of 0.27% and a maximum error of 4.77%. These
expressions significantly improve the accuracy of the effective
resistance estimation near the edges and corner of a resistive
mesh, providing a tenfold reduction in error. In case studies,
the expressions provide four to six orders of magnitude speedup
in IR analysis of a 104 × 104 grid, while providing accuracy
comparable to nodal analysis.

Index Terms— Very large scale integration, resistance, power
dissipation, passive circuits, graph theory, functional analysis,
power distribution.

I. INTRODUCTION

AMESH structure is an important topology for modeling
a variety of physical and mathematical phenomena. The

structure consists of regularly placed nodes within a multi-
dimensional space and connected with resistors to adjacent
nodes. Despite the theoretical nature of an infinite mesh struc-
ture, a variety of practical examples exist, where the size and
regularity support the assumption of an infinite grid. For exam-
ple, the resistance of a large uniform conducting sheet can be
modeled as a resistive grid [1], enabling the use of an infi-
nite resistive grid to model, for example, substrate noise [2].
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Fig. 1. Two layer power and ground network mesh modeling process.
a) Original view of two-layer mesh. The light and dark gray segments are
connected to, respectively, power and ground. b) A simplified model with the
ground mesh removed. c) Equivalent resistive mesh of the power network.

Fig. 2. Portions of two-dimensional infinite resistive structures. a) Portion
of fully infinite mesh near the origin. b) Portion of half-plane mesh near the
edge. c) Portion of quarter-plane mesh near the corner.

A mesh structure is prevalent in modern integrated circuits,
particularly in power and ground distribution networks [3] and
decoupling capacitor placement [4]. The power and ground
delivery networks typically consist of layered perpendicular
metal interconnects [4]. A typical on-chip network structure
is shown in Fig.1a. During the analysis process, power sup-
ply and ground networks are typically analyzed separately,
as shown in Fig.1b. The resulting grid can be modeled as a
resistive mesh, as shown in Fig.1c.

Analysis of power delivery noise in power grids is an impor-
tant problem in VLSI systems. Conventional nodal analysis
tools typically exhibit superlinear computational complex-
ity, resulting in significant simulation time. An alternative
approach for the analysis of power delivery grid circuits is
proposed in [5]. To simplify the analysis, the resistive mesh
is reduced to an equivalent effective resistance where the grid
is assumed to be infinitely large. The primary benefit of this
approach is significantly lower complexity, independent of grid
size. The main drawback, however, is higher error in proximity
of the grid boundaries due to the assumption of an infinite grid.

This paper aims to bridge this gap. The effective resistance
of a large resistive grid near the edges and corners is modeled
as a truncated infinite mesh. In this paper, the infinite mesh
truncated along a single dimension is called a half-plane
mesh (Fig. 2a), while an infinite mesh truncated along two
orthogonal dimensions is called a quarter-plane mesh (Fig. 2b).
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By utilizing the image and superposition methods, exact
integral and approximate closed-form expressions for half-
and quarter-plane meshes are presented. A brief review of
the electric potential in an infinite mesh is provided in
Section II. The image method for electric circuits is described
in Section III. A derivation of the exact integral equations
is described in Section IV, followed by a derivation of the
closed-form expressions in Section V. The accuracy of the
results is discussed in Section VI. The findings are summarized
in Section VII.

II. BACKGROUND

Determining the effective resistance between two nodes of
an infinite resistive mesh, also known as a Liebman mesh [6],
is a classical problem. The objective is to determine an
effective two-port resistance given a two-dimensional network
with identical resistors between adjacent nodes, as shown
in Figs. 2a and 2b.

The problem has been studied from a variety of per-
spectives. An intuitive solution for determining the effec-
tive resistance between adjacent nodes within a mesh is
described in [6] and [7], where superposition of the current
sources and symmetry are used to determine the voltage
between adjacent nodes. The first general solution for this
problem was published in 1940 [8], where the probability of
reaching a specific node within a lattice during a random
walk is determined, a process closely related to finding the
effective resistance within a grid [9]. A solution, specific
to electrical circuits, was published in 1950 [10], where a
two-dimensional elliptic wave partial differential equation is
applied to an infinite lattice. Several later works have been
published describing alternative methods to solve this problem,
including Fourier Transform [1], [11], Green’s function [12]
and graph theory [13].

Several extensions and variations of solutions to this prob-
lem have been published. In [11] and [12], the problem is
solved for a multi-dimensional grid, and triangular and hexag-
onal infinite lattices. Regular and semi-regular polyhedric
structures as well as multi-dimensional cubes are described
in [14], and an infinite cylindrical grid is considered in [15].
More practical considerations are included in [16], where
a solution for an infinite grid with unequal horizontal and
vertical resistances is provided.

Despite the problem being well studied, little attention has
been devoted to the effects of truncations on the effective
resistance. One version for determining the effective resistance
in an infinite mesh is provided in [13],

Reff (x, y) = 1

π i

∫ π

0

1 − ex cos−1(2−cos(α)) cos(yα)√
1 − (2 − cos(α))2

dα. (1)

The accuracy of (1) is compared with numerical analysis
of a large resistive mesh. The relative error of the effective
resistance near the edges and corners is shown, respectively,
in Figs. 3 and 4. Due to the assumptions of symmetry and
regularity, the effective resistance is more accurately evaluated
near the center of the grid, where the effect of the boundaries is
less significant. Near the edges and corners, however, the error

Fig. 3. Relative error (in per cent) of the effective resistance expression
of an infinite grid (1) [13] within the proximity of the grid edge. The actual
resistance is determined using a nodal analysis between node (x0, 0) and node
(x, y) for a) x0 = 0, b) x0 = 10, and c) x0 = 25. The grid dimensions are
101 × 201. The point (x0, 0) is indicated by the ×-mark.

Fig. 4. Relative error (in per cent) of the effective resistance expression of
an infinite grid (1) [13] within the proximity of the grid corner. The actual
resistance is determined using a nodal analysis between node (x0, y0) and
node (x, y) for a) x0 = y0 = 0, b) x0 = y0 = 10, and c) x0 = y0 = 25.
The grid dimensions are 101 × 101. The point (x0, y0) is indicated by the
×-mark.

of (1) can reach 40%, limiting the applicability of the integral
expression.

III. ELECTRIC POTENTIAL IN AN INFINITE MESH

The solution proposed in this paper is based on modifying
the methods described in [13] and [16]. An alternative Green’s
function-based approach is presented in Appendix A. Consider
a fully infinite anisotropic resistive mesh. Let the horizontal
and vertical resistances be, respectively, rx = r and ry = kr .
Assign coordinates to each node, inject current I into node
(x0, y0), and let the current exit at a node infinitely far from
the injection node. Denote the potential at node (x, y) due to
current I injected at (x0, y0) as φx0,y0(x, y). Three important
properties of this potential exist. First, if the current source is
moved by distance (a, b), the potential distribution across the
grid is also moved by the same distance,

φx0,y0(x, y) = φx0+a,y0+b(x + a, y + b). (2)

Another important property is symmetry, i.e., the current
source and probe coordinates can be swapped,

φx0,y0(x, y) = φx0,y(x, y0) = φx,y(x0, y0) = φx,y(x0, y0).

(3)
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Fig. 5. Current injection into an infinite resistive mesh.

From these properties, note that

φx0,y0(x, y) = φ−x0,y0(−x, y)

= φ−x0,−y0(−x,−y) = φx0,−y0(x,−y). (4)

To evaluate the effective resistance Reff between nodes
(x0, y0) and (x, y), the two current sources can be superim-
posed, as shown in Fig. 5. Knowing the voltage drop between
these nodes allows the effective resistance to be determined,

R∞ = Vx0,y0 − Vx,y

I
, (5)

where Vx0,y0 and Vx,y are the voltage, respectively, at (x0, y0)
and (x, y). Vx0,y0 and Vx,y, in turn, can be expressed as the
superposition of the potentials due to multiple current sources,

Vx0,y0 = φx0,y0(x0, y0) − φx,y(x0, y0), (6)

Vx,y = φx0,y0(x, y) − φx,y(x, y). (7)

Based on (2) to (7), the resistance between two arbitrary nodes
is

R∞ = 2
(
φ(0, 0) − φ(x − x0, y − y0)

)
I

, (8)

where, for brevity, φ(x, y) = φ0,0(x, y).

IV. ELECTRIC POTENTIAL WITHIN A TRUNCATED

INFINITE MESH

The solution proposed in this paper is based on modeling
the mesh truncation using image current sources. The image
theorem is a powerful technique widely used in electrostat-
ics to determine the effects of surfaces on an electric field
distribution. A similar technique can be utilized to determine
the electric potential due to the current source near the mesh
truncation. The validity of the image method for a truncated
mesh is established in Appendix B using the uniqueness
theorem. In subsection IV-A, the potentials of a fully infinite
grid determined in section III are superimposed to model the
behavior of a truncated grid. In subsection IV-B, the integral
expression for the effective resistance in a half-plane and
quarter-plane grid is presented.

Fig. 6. Image method to model truncation in a half-plane mesh. The dashed
line illustrates the boundary between the real and image half-planes. Two
image sources are introduced in the negative-x plane to model the effect of
truncation, ensuring zero effective current across the boundary.

A. Modeling Truncation with Image

Consider the case where an infinite grid of resistors is
truncated at x = 0, removing all of the nodes with negative
coordinates, as shown in Fig. 2. The assumption of symme-
try along the x-axis becomes invalid, making the solutions
reported in [8] to [12] inapplicable for a truncated mesh.

To circumvent this limitation, truncation can be replaced
with another topology modification which satisfies the bound-
ary conditions, (52) and (53). The truncated mesh structures
are modeled as a fully infinite mesh with boundary conditions.
The condition for the half-place mesh is

φ(0, y) − φ(−1, y) = 0, (9)

i.e., the current flowing through the grid edge is zero. Simi-
larly, a quarter-plane mesh is modeled as a fully infinite mesh
with the following boundary conditions,

φ(0, y) − φ(−1, y) = 0, (10)

φ(x, 0) − φ(x,−1) = 0. (11)

The image technique accomplishes this task. In the fol-
lowing subsections, expressions for the effective resistance in
terms of potentials are derived.

1) Half-Plane Mesh: Consider the circuit topology shown
in Fig. 6 with the ground placed infinitely distant. The positive-
x side of the grid remains the same as the truncated grid. The
symmetric negative-x side, however, maintains zero voltage
between nodes (0, y) and (−1, y), thereby modeling the effect
of the grid edge by satisfying the boundary condition (9).

A derivation of the effective resistance starts with (5).
To model the truncation, two image current sources are
introduced, as shown in Fig. 6. Unlike a fully infinite mesh,
the voltage at nodes (x0, y0) and (x, y) within a half-plane
mesh is the sum of the potential due to four current sources,

Vx0,y0 = φx0,y0(x0, y0) − φx,y(x0, y0)

+ φ−x0−1,y0(x0, y0) − φ−x−1,y(x0, y0), (12)

Vx,y = φx0,y0(x, y) − φx,y(x, y)

+ φ−x0−1,y0(x, y) − φ−x−1,y(x, y). (13)
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Simplifying (2) to (4),

Vx0,y0 = φ(0, 0) − φ(x − x0, y − y0)

+ φ(2x0 + 1, 0) − φ(x + x0 + 1, y − y0), (14)

Vx,y = φ(x − x0, y − y0) − φ(0, 0)

+ φ(x + x0 + 1, y − y0) − φ(2x + 1, 0). (15)

Combining (14) and (15) with (5) yields

Rhalf I = 2φ(0, 0) − 2φ(x − x0, y − y0)

+ φ(2x0+1, 0)−2φ(x +x0+1, y − y0)+φ(2x +1, 0).

(16)

2) Quarter-Plane Mesh: Consider the case shown in Fig. 2,
where an infinite mesh is truncated along the x- and y-axes.
Similar to the half-plane case, this topology can be modeled
by introducing six image current sources, as shown in Fig. 7,
thereby satisfying the boundary conditions in (10) and (11).
The resulting voltages at (x0, y0) and (x, y) are the sum
of the potentials due to eight current sources, which, after
simplification, yields

Vx0,y0

= φ(0, 0) + φ(2x0 + 1, 0)

+ φ(0, 2y0 + 1) + φ(2x0 + 1, 2y0 + 1)

− φ(x − x0, y − y0) − φ(x + x0 + 1, y − y0)

− φ(x − x0, y + y0 + 1) − φ(x + x0 + 1, y + y0 + 1),

(17)

Vx,y

= φ(x − x0, y − y0) + φ(x + x0 + 1, y − y0)

+ φ(x − x0, y + y0 + 1) + φ(x + x0 + 1, y + y0 + 1)

− φ(0, 0)−φ(2x + 1, 0)−φ(0, 2y+1)−φ(2x +1, 2y+1).

(18)

The effective resistance is, therefore,

Rqt. I = 2φ(0, 0) + φ(2x0 + 1, 0)

+ phi(0, 2y0+1)+φ(2x0+1, 2y0+1)+φ(2x +1, 0)

+ φ(0, 2y + 1) + φ(2x + 1, 2y + 1)

− 2φ(x − x0, y − y0) − 2φ(x + x0 + 1, y − y0)

− 2φ(x −x0, y+y0+1)−2φ(x +x0+1, y+y0+1).

(19)

Expressions (16) and (19) describe, respectively, the effec-
tive resistance in a half-plane mesh and a quarter plane mesh.
By adding the electric potentials at certain nodes due to
the current injected at (0, 0), the effective resistance can be
determined. Derivation of the electric potential is presented in
the upcoming subsection.

B. Integral Expressions for Effective Resistance

The integral expression for the effective resistance in an
anisotropic infinite grid is determined in [11] and [16] and is

R∞ = kr

π

∫ π

0

1 − e−|x−x0|α cos(|y − y0|β)

sinh(α)
dβ, (20)

Fig. 7. Image method to model truncation in a quarter-plane mesh. The
dashed lines illustrate the boundary between the real and image portions of
the circuit. Six image sources are introduced in three quadrants of an infinite
plane to model the effect of the truncations, ensuring zero effective current
across the boundaries.

where

α = cosh−1(1 + k − k cos(β)). (21)

�k(x, y) is defined as

�k ≡ k

2π

∫ π

0

1 − e−|x |α cos(yβ)

sinh(α)
dβ. (22)

The potential within an infinite grid (8) is described as

φ(x − x0, y − y0) = φ(0, 0) − r I�k(x − x0, y − y0). (23)

Expression (16), therefore, reduces to

Rhalf

r
= 2�k(x − x0, y − y0)

+ 2�k(x+x0+1, y−y0)−�k(2x0+1, 0)−�k(2x+1, 0).

(24)

Note that due to symmetry along the y-axis, the effective
resistance of a half-plane mesh depends upon (y − y0) and
not on y and y0 separately. In contrast, both x and x0 are
necessary due to the symmetry broken by the truncation.

The exact value of (24) for the special case of x0 = 0,
k = 1 is listed in Table I. Note that due to truncation,
the effective resistance in the x and y directions is not equal,
with the resistance along the y-axis increasing at a higher rate.
A similar trend is observed for x0 > 0. The effective resistance
is evaluated using (24) for x0 = {0, 5, 10}, x ∈ [0, 25],
y ∈ [−25, 25], and k = 1. The results are shown in Fig. 8.
Note that the effective resistance to those nodes near the
edge of the mesh is higher. Intuitively, this behavior can be
explained by the more difficult access to the points along the
edges. While the nodes located along the x-axis (x, 0) receive
current from all four sides, the nodes located along the y-axis
(0, y) are more difficult to reach due to there being only three
sides.
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TABLE I

EXACT NORMALIZED RESISTANCE BETWEEN (0, y0) AND (x, y) IN A HALF-PLANE RESISTIVE GRID WITH y ∈ [−3, 3], x ∈ [0, 3],
AND rh = ry = r . THE NUMERICAL VALUES ARE WITHIN THE SQUARE BRACKETS

Fig. 8. Effective resistance of a half-plane mesh with k = 1 between (x0, 0)
and (x, y) for x ∈ [0, 25] and y ∈ [−25, 25]. a) x0 = 0, b) x0 = 5, and c)
x0 = 10.

For the quarter-plane mesh, combining (22) with (19) yields

Rqt.

r
= 2�k(x−x0, y−y0) + 2�k(x+x0+1, y−y0)

+ 2�k(x−x0, y+y0+1) + 2�k(x+x0+1, y+y0+1)

− �k(2x0+1, 0)−�k(0, 2y0+1)−�k(2x0+1, 2y0+1)

− �k(2x+1, 0) − �k(0, 2y+1) − �k(2x+1, 2y+1).

(25)

Note that due to the broken symmetry in both the x and
y directions, the coordinates of both (x0, y0) and (x, y) are
necessary to determine the effective resistance.

A numerical evaluation of (25) for k = 1 is shown in Fig. 9.
As compared to the edges, the effective resistance increases
more rapidly near the corner. This trend can be explained using
the same intuition: the corner node can be accessed from only
two sides unlike the other nodes, which can be accessed from
three or four sides. Less current can therefore flow through
the node at the same voltage, resulting in a higher effective
resistance.

V. CLOSED-FORM APPROXIMATION

The exact resistance for a half- and quarter-plane mesh is
determined from, respectively, (24) and (25). For practical
purposes, however, an approximate, computationally efficient
expression is desirable. A closed-form expression for the
integral solution is therefore presented in this section. The

Fig. 9. Effective resistance of a quarter-plane mesh with k = 1 between
(x0, y0) and (x, y) for x ∈ [0, 50] and y ∈ [−50, 50]. a) x0 = y0 = 0, b)
x0 = y0 = 10, and c) x0 = y0 = 25.

derivation is performed in two steps. First, the integral expres-
sion for the potential at an arbitrary node within a grid is
approximated. The total resistance of a truncated grid is next
evaluated using an approximate potential expression.

The derivation of a closed-form expression for the effective
resistance is performed in two steps adapted from [1]. First,
the integral expression �k(x, y) is decomposed as

�k(x, y) = J1 + J2 + J3, (26)

where

J1 =
√

k

2π
�

[
E1

(
π

(
x
√

k + iy
))

+ ln
(
π

(
x
√

k + iy
))

+ γ
]
, (27)

J2 = k

2π

∫ π

0

(
e−xβ

√
k

β
√

k
− e−xα

sinh (α)

)
cos(yβ)dβ, (28)

J3 = k

2π

∫ π

0

(
1

sinh(α)
− 1

β
√

k

)
dβ, (29)

E1(z) =
∫ ∞

z

e−t

t
dt, (30)

and γ ≈ 0.5772 is the Euler-Mascheroni constant. The first
integral J1 can be numerically determined using the exponen-
tial integral function E1(z), available in most popular engi-
neering packages, including SciPy [17] and MATLAB [18].
For large values of x and y, the integral J1 reduces to

J1 ≈
√

k

4π

[
ln

(
x2 + ky2

)
+ 2 ln (π) + 2γ

]
. (31)

To analyze the second integral, note that for small β,
sinh(α) ≈ β and, for large values of β, the numerator
of the integral vanishes for large β with values x and y
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TABLE II

COEFFICIENTS FOR THE POLYNOMIAL APPROXIMATION OF J3 (32)

above 10. This term is, therefore, neglected in the closed-form
expression.

The third integral is a function of a single variable k and is
approximated as a fourth degree polynomial,

J3 ≈
4∑

i=0

ai k
i , (32)

where the coefficients of the expression are listed in Table II.
The final closed-form expression for �k(x, y) is, therefore,

�∗
k(x, y) =

√
k

4π

[
ln

(
x2 + ky2

)
+2 ln (π) + 2γ

]
+

4∑
i=0

aik
i .

(33)

With a closed-form expression for �(x, y), the effective
resistance of a half-plane resistive mesh is

Rhalf

r
≈ 2�∗

k(x − x0, y − y0) + 2�∗
k(x + x0 + 1, y − y0)

− �∗
k(2x0 + 1, 0) − �∗

k(2x + 1, 0). (34)

Similarly, for the quarter-plane mesh,

Rqt.

r
≈ 2�∗

k(x−x0, y−y0) + 2�∗
k(x+x0+1, y−y0)

+ 2�∗
k(x − x0, y+y0+1) + 2�∗

k(x+x0 + 1, y+y0+1)

− �∗
k(2x0+1, 0) − �∗

k(0, 2y0+1) − �∗
k(2x0+1, 2y0+1)

− �∗
k(2x + 1, 0) − �∗

k(0, 2y + 1) − �∗
k(2x + 1, 2y + 1).

(35)

VI. MODEL EVALUATION

The primary contribution of this paper is the accurate and
fast estimation of the IR drop between nodes located close
to a grid edge. To evaluate the applicability of the model,
in subsection VI-A, the accuracy of the exact expressions (24)
and (25), closed-form expressions (34) and (35), and nodal
analysis is compared. In subsection VI-B, the computational
speed of the model is examined.

A. Accuracy Evaluation

The relationship between the relative error and the position
of the probed nodes is shown in Figs. 10 and 11. Note that
a larger error is produced when the resistance is evaluated
between nearby nodes and with nodes along the y-axis. A peak
error of 4.77% is produced when the resistance is evaluated

Fig. 10. Relative error (in per cent) of (34) as compared to (24) with respect
to x and y for k = 1 and a) x0 = 0,b) x0 = 5, and c) x0 = 10.

Fig. 11. Relative error (in per cent) of (35) as compared to (25) with respect to
x and y for k = 1 and a) x0 = y0 = 0,b) x0 = y0 = 5, and c) x0 = y0 = 10.

between the adjacent nodes. For a large distance between
(x0, 0) and (x, y), the relative error approaches zero.

Note from Fig. 3 that a large error is induced if the expres-
sion for a fully infinite grid is used to estimate the voltage
drop near the edge of a finite mesh. A drastic increase in
accuracy is observed when using (24) or (34). The error of (24)
and (34) as compared to the resistance evaluated through a
nodal analysis on a 101 × 201 mesh is shown in Fig. 12.
As compared to (1), the error in (24) and (34) is below
3% along the edge. A considerably larger error is produced
by (34) as compared to (24) when one of the nodes is at the
grid edge and another node is in close proximity. In addition,
the error is significantly increased when the effective resistance
is evaluated using closed-form expression (34) between nodes
within close proximity. Note that the closed-form expression
is derived with the assumption of a large separation between
the target nodes, which leads to larger error. In other cases,
the accuracy of (24) and (34) is approximately equal. Likewise,
a significant increase in accuracy is achieved with (25) or (35),
as is evident from Fig. 13. Near the corner and edges, the error
is below 2%.

B. Computational Speed

The speedup of the analysis and simulation process is an
important contribution of this paper. The conventional method

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on November 13,2020 at 23:33:48 UTC from IEEE Xplore.  Restrictions apply. 



4374 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 66, NO. 11, NOVEMBER 2019

Fig. 12. Relative error (in per cent) of (24) (top row) and (34) (bottom row)
as compared to the resistance determined using a nodal analysis between node
(x0, 0) and node (x, y) for a) x0 = 0, b) x0 = 10, and c) x0 = 25. The grid
dimensions are 101 × 201. The point (x0, 0) is indicated by the ×-mark.

Fig. 13. Relative error (in per cent) of (25) (top row) and (35) (bottom row)
as compared to the resistance determined using a nodal analysis between
node (x0, y0) and node (x, y) for a) x0 = y0 = 0, b) x0 = y0 = 10, and
c) x0 = y0 = 25. The grid dimensions are 101 × 101. The point (x0, y0) is
indicated by the ×-mark.

for determining the effective resistance is numerical nodal
analysis, where a linear system of equations is analyzed [19],

Ref f = 1diag(H )T + diag(H )1T − 2H, (36)

where H ∈ R
(M N−1)×(M N−1) is the inverse of the reduced

conductance matrix, 1 ∈ R
(M N−1) is the vector with all entries

equal to 1, and diag(A) is the diagonal of matrix A. The

TABLE III

COMPUTATIONAL SPEEDUP FOR DETERMINING THE EFFECTIVE
RESISTANCE BETWEEN A PAIR OF NODES IN AN M × N GRID

advantage of this method is the effective resistance between
any pair of nodes in a circuit can be evaluated. If the resistance
between only a small subset of nodes is needed, however,
this approach is highly inefficient. Assuming the pitch of the
top metal layer is 2 μm for a 45 nm technology node [20],
the grid size of the power delivery network in a 4 cm2 die size
is on the order of 104 ×104. The nodal analysis of this matrix
requires the solution of a 108 × 108 linear system, resulting
in significant analysis time. The computational time tnodal

required to determine the effective resistance in a nonuniform
grid using nodal analysis is therefore a superlinear function of
the dimensions of the grid,

tnodal = t1(M N)c, (37)

where M and N are dimensions of the grid, t1 is a proportion-
ality constant, and c is the degree of the solver complexity,
typically larger than one. Importantly, the method allows
the effective resistance between all pairs of nodes to be
determined.

In contrast, the method proposed in this paper does not
require solving a system of linear expressions. The time
required to determine the effective resistance using the pro-
posed method does not depend on the grid dimensions. The
method proposed here has constant complexity where the total
computational time timage is

timage = t2n, (38)

where n is the number of target node pairs for which the
effective resistance is required, and t2 is the time required to
compute the effective resistance for a single pair of nodes
using (24), (25), (34), or (35). The proposed approach is
justified, therefore, when the subset of nodes of interest is
sufficiently smaller than the total grid size.

A comparison of the computational speed is provided
in Table III. The algorithms are implemented in Python
using the Numpy and Scipy packages [17] on an eight core
3.40 GHz Intel Core i7-6700 machine with 24 GB RAM.
The nodal analysis has been performed using the Scipy sparse
matrix solver [17]. Note the rapid increase in speedup with
grid size. For the exact integral equations, the speedup reaches
three to four orders of magnitude in a 104 × 104 grid. Greater
speedup is achieved with the closed-form expressions, exhibit-
ing six orders of magnitude improvement in computational
time in a 104 × 104 grid. Simulation of grids larger than
104 × 104 is not possible using the Scipy sparse matrix solver
due to limited memory.
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VII. CONCLUSIONS

Image and superposition methods are utilized to investigate
truncated infinite anisotropic mesh structures. Exact integral
and closed-form expressions for the effective resistance are
presented. A closed-form expression offers a computationally
efficient method for evaluating the effective resistance, which
can be beneficial in several VLSI circuit applications such as
resistive noise analysis, placement of decoupling capacitors,
and substrate noise models. Significant speedup is achieved
using the proposed expressions, reaching six orders of magni-
tude with the closed-form expressions. The proposed frame-
work can be utilized in a variety of VLSI oriented applications,
including circuit optimization, analysis, and synthesis.

APPENDIX A
GREEN’S FUNCTION FOR THE TRUNCATED GRID

It is of interest to determine the lattice Green’s func-
tion (LGF) for a truncated infinite mesh. The LGF is the
response of a lattice to a unit perturbation at the origin,

�r G(x, y) = δ(x, y); x, y ∈ Z, (39)

where G(x, y) is the LGF, �r is the discrete differential
operator, and δ(x, y) is the Kronecker delta function, which
is unity at the origin and zero elsewhere. The electrical form
of (39) is obtained by applying KCL,

�rφ(x, y) = r I0δ(x, y); x, y ∈ Z, (40)

where

φ(x, y) = r I0G(x, y) (41)

is the potential distribution within the grid in response to a
current I0 injected at the origin. Combining (8) and (41) results
in

Reff = 2r (G (0, 0) − G (x − x0, y − y0)) , (42)

which is consistent with [12]. From [16], the LGF for an
anisotropic infinite grid is

G(x, y) = k

2π

∫ π

0

e−|x |α cos yβ

sinh α
dβ. (43)

To determine the LGF for a half-plane mesh, the following
equation,

�rφhalf (x, y) = r I0δ(x, y); x ∈ N0, y ∈ Z, (44)

is solved by the image method. Expression (44) is transformed
into

�rφhalf (x, y)=r I0(δ(x, y)+δ(−x −1, y)); x ∈ N0, y ∈ Z.

(45)

Due to the linearity of �r ,

�rφhalf (x, y)=�rφ(x, y)+�rφ(−x −1, y); x ∈N0, y ∈Z.

(46)

By the uniqueness theorem,

φhalf (x, y) = φ(x, y) + φ(−x − 1, y); x ∈ N0, y ∈ Z.

(47)

Using (22),

φ(x, y) = φ0 − r I0�k(x, y); x, y ∈ Z, (48)

φ0 = k I0r

2π

∫ π

0

dβ

sinh α
. (49)

Expression (47) reduces to

φhalf (x, y) = 2φ0 − r I0(�k(x, y)

+ �k(−x − 1, y)); x ∈ N0, y ∈ Z. (50)

Following similar steps for the quarter-plane mesh yields

φqt.(x, y)

= 4φ0−r I0(�k(x, y)+�k(−x − 1, y)+�k(x,−y − 1)

+ �k(−x − 1,−y − 1)); x, y ∈ N0. (51)

The effective resistance is determined in each case using (8).

APPENDIX B
UNIQUENESS BASED ON BOUNDARY CONDITIONS

To demonstrate the validity of the method for a truncated
mesh, it is proved here that the potentials within the circuit
are uniquely determined by the boundary conditions. Thus,
it is sufficient to maintain the same boundary conditions while
modifying the topology to ensure the same electric potentials
within a grid.

Consider the circuit shown in Fig. 2a. Boundary conditions
φb(x, y) are imposed on a set of nodes (x, y) ∈ Sv . The
arbitrary node (xg, yg) is connected to ground. The resulting
boundary conditions of the system can be expressed as

φ(x, y) = φb(x, y), at (x, y) ∈ Sv , (52)

φ(xg, yg) = 0. (53)

Suppose current Iin(x, y) is injected at specific nodes (x, y) ∈
Si such that

I (x, y) =
{

Iin(x, y), at (x, y) ∈ Si , (54a)

0 otherwise. (54b)

The uniqueness theorem states that the conditions described
in (52) to (53) are sufficient to uniquely determine the potential
φ(x, y) due to injected current I (x, y). To prove this state-
ment, assume this statement is incorrect and two distinct distri-
butions of potentials exist that satisfy the boundary conditions:

φ1(x, y) 	= φ2(x, y). (55)

Applying Kirchhoff’s current law yields

I (x, y) = 4φ1(x, y) − φ1(x − 1, y)

− φ1(x + 1, y) − φ1(x, y − 1) − φ1(x, y + 1),

(56)

I (x, y) = 4φ2(x, y) − φ2(x − 1, y)

− φ2(x + 1, y) − φ2(x, y − 1) − φ2(x, y + 1).

(57)

Suppose that φ3(x, y) is also a potential distribution such that

φ3(x, y) = φ1(x, y) − φ2(x, y). (58)
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From (56) and (57),

0 = 4φ3(x, y) − φ3(x − 1, y)

− φ3(x + 1, y) − φ3(x, y − 1) − φ3(x, y + 1). (59)

Expression (59) indicates that φ3(x, y) is the potential distri-
bution within a circuit without current injection. No currents,
therefore, flow through the resistors and φ3(x, y) is constant.
Note that

φ3(x1, y1) = φ1(x1, y1) − φ2(x1, y1) = 0. (60)

Therefore, since φ3(x, y) is constant,

φ3(x, y) = φ3(x1, y1) = 0, (61)

φ1(x, y) = φ2(x, y), (62)

which contradicts (55), indicating that the conditions described
in (52) to (53) uniquely determine the potential distribution in
an infinite grid due to current injection I (x, y).
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