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Effective Resistance of Finite Two-Dimensional
Grids Based on Infinity Mirror Technique
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Abstract— Conventional numerical circuit analysis tools
typically scale superlinearly with the number of nodes. With
the rapid increase in nodes in modern VLSI systems, alternative
methods are required. The effective resistance is an important
characteristic of electrical systems, which is used to simplify the
circuit analysis process. An infinite resistive rectangular mesh is
commonly assumed in the analysis of grid structures to determine
the effective resistance of a grid. The assumption of infinity
provides a useful approximation when a large grid is analyzed
far from the boundaries. If however the grid is analyzed in close
proximity to a boundary or if the grid dimensions are small,
the assumption of infinity may lead to significant error. To address
this issue, the infinity mirror technique is proposed to determine
the effective resistance of a two-dimensional structure, where
one or both dimensions are finite. The method exhibits good
agreement with nodal analysis, achieving an error below 1%
in case studies. The proposed expressions enhance the speed of
static grid analysis by several orders of magnitude by replacing
computationally expensive nodal analysis with an equivalent
reduced grid analysis. A 1,400 fold speedup is achieved in the
analysis of 100 nodes within a 103 × 104 grid.

Index Terms— Very large scale integration (VLSI), circuit
analysis, circuit simulation, resistance, equivalent circuits, passive
circuits, graph theory, functional analysis, power distribution,
power dissipation.

I. INTRODUCTION

ARECTANGULAR mesh is a common structure in sci-
ence and engineering. In engineering, a rectangular

mesh is used to model on-chip power and ground networks
and silicon substrates, as well as electrically and thermally
conductive media. Applications specific to very large scale
integration (VLSI) circuits include digital logic, memory, and
power and ground distribution networks [1]. In modern VLSI
systems, large grid sizes are common. Conventional numerical
analysis techniques to solve a large system of linear equations
result in prohibitive computational time.

The effective resistance is an important characteristic of
these grid structures. Applications include static power and
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Fig. 1. Infinite two-dimensional grid.

ground network analysis [2], [3], decoupling capacitor allo-
cation [4], [5], RC delay optimization [6], electrically and
thermally conductive media [7], [8], and certain graph charac-
teristics, such as coverage and commute times [9]. From the
perspective of circuit analysis, the effective resistance can be
utilized to significantly reduce the computational complexity
of the grid analysis process [2].

The effective resistance of an infinite resistive lattice is
a classical problem in circuit theory [10]. The objective is
to determine an equivalent resistance between two arbitrary
points within an infinite two-dimensional grid of resistors.
The effective resistance between two adjacent points within
a two-dimensional isotropic mesh has been determined using
symmetry and superposition [11]. In the case of non-adjacent
nodes, however, more advanced methods are required. At least
six different solutions have been developed since 1940 for this
problem, such as random walk theory [12], elliptic integrals
[13], Fourier transforms [14]–[16] and Green’s function [17].
The problem has been extended to a variety of infinite struc-
tures, such as hypercubes [15], [17], [18], triangles [15], [17],
hexagons [15], [17], tori and cylinders [19], and anisotropic
rectangular lattices [20].

Expressions describing an infinite grid exhibit good agree-
ment with nodal analysis if the effective resistance is measured
between nodes located far from the boundary of the grid.
Prohibitively large error can however be produced when the
resistance is measured between nodes located close to the
grid boundaries [21]. Despite the well studied nature of this
problem, less attention has been devoted to the analysis of
truncated and finite rectangular grids.

Different finite regular structures have been investigated in
the literature, including generalized linear chains [22] and cir-
culant graphs [23]. Truncation along one and two dimensions
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Fig. 2. Effective resistance and relative error of a 25 × 51 isotropic
grid between node (0, 0) and (x, y). a) Evaluation using nodal analysis,
b) evaluation using the half-plane mesh equation [21], and c) error (in per cent)
of (b) relative to (a).

has been analyzed in previous work using the circuit-level
image technique [21]. While the expressions described in [21]
are in good agreement with nodal analysis if the resistance is
within close proximity of a single boundary or corner, these
expressions become inaccurate if the resistance is measured
between terminals located at opposite boundaries and corners.
The double-sum expressions for the effective resistance in the
various grid structures have previously been described in [24].
The computational complexity of these expressions, however,
increases linearly with the number of nodes. In this paper,
the infinity mirror technique extends the image method to
finite structures. With this technique, the effective resistance is
determined with high accuracy in a finite rectangular grid of
arbitrary size with potential extension to cubic and hypercubic
topologies. The computational complexity of the proposed
expressions does not depend on the grid size and number of
nodes.

To illustrate the relevance of the infinity mirror technique,
consider a 25 × 51 uniform resistive grid. The effective
resistance is determined between the node on the left boundary
and all other nodes using nodal analysis (Fig. 2a) and the
half-plane mesh equation (Fig. 2b) [21]. The relative error
is shown in Fig. 2c. While the error is low close to the left
boundary, the error may exceed 15% if the half-plane equation
is used to evaluate the resistance at the opposite boundary of
the grid.

This paper is organized as follows. In section II, the infinity
mirror technique is reviewed, which extends the image method
described in [21] to finite structures. The effective resistance
in grids with finite dimensions is also presented. In section III,
these expressions are modified to enhance the efficiency while
maintaining accuracy below 1%. Application of the infinity
mirror technique to practical problems is presented in section
IV using three case studies. Computational speedup of up to
five orders of magnitude is demonstrated for certain scenarios.
Summary comments are provided in section V.

II. INFINITY MIRROR TECHNIQUE

The effective resistance between two points within a mesh
is determined using the method adapted from [14]. Consider a

two-dimensional resistive mesh. Pick two nodes, (x0, y0) and
(x, y), at a finite distance between each other with ground
infinitely far. Connect the current source injecting current I
into (x0, y0). The resulting potential at (x0, y0) and (x, y) due
to the current source at (x0, y0) is, respectively, φx0,y0(x0, y0)
and φx0,y0(x, y). Remove the current source at (x0, y0) and
inject current −I into (x, y). The resulting potential at (x0, y0)
and (x, y) is, respectively, −φx,y(x0, y0) and −φx,y(x, y). The
effective resistance can be determined by superimposing these
solutions,

Re f f = V (x0, y0) − V (x, y)

I
, (1)

where V (x0, y0) and V (x, y) are the effective voltage at,
respectively, (x0, y0) and (x, y) due to all current sources
within the grid. V (x0, y0) and V (x, y) can be expressed,
respectively, as the superposition of potentials due to each
individual current source,

V (x0, y0) = φx0,y0(x0, y0) − φx,y(x0, y0), (2)

V (x, y) = φx0,y0(x, y) − φx,y(x, y). (3)

The problem of determining the effective resistance within a
grid reduces to finding the electric potential caused by the
injected current. A similar approach is applicable to truncated
grids. As in the case of a fully infinite mesh, the effective
resistance in a truncated mesh structure is determined from (1).
The voltages, V (x0, y0) and V (x, y), however, change to
consider the effects of the boundaries modeled as image
current sources.

The image method for an infinite grid was introduced
in [21] and applied to half- and quarter-plane mesh structures.
The resulting effective resistance expressions exhibit good
agreement with the resistance of a large grid near a boundary
or a corner, where the effects of opposite boundaries can be
neglected. If however the effects of the opposite boundaries are
significant; for example, if the effective resistance is measured
between the opposite corners of a finite rectangular mesh,
these expressions are no longer accurate. Efficient methods
for determining the effective resistance in a grid where at
least one dimension is finite are presented in this section.
In subsection II-A, an expression is presented for an infinite
strip, a mesh which is finite in one dimension and unbounded
in another dimension (y ∈ Z). This result is utilized in
subsection II-B to determine the effective resistance within a
semi-infinite strip, an infinite strip truncated along the infinite
dimension (y ∈ N0). An expression for a finite mesh is
presented in subsection II-C. Generalization of the method to
higher dimensions is provided in subsection II-D

A. Infinite Strip

Consider the circuit shown in Fig. 3a, where a resistive grid
is bounded between 0 and (wx − 1) in the x-dimension and
is unbounded in the y-dimension. The number of nodes in
a row along the x-dimension is wx and is described here as
the width of the grid. The bounds of the strip obstruct the
current from flowing between the node pairs, {(−1, y), (0, y)}
and {(wx − 1, y), (wx , y)}.
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Fig. 3. Infinity mirror method applied to an infinite resistive strip of width wx .
a) Original resistive strip, b) first iteration of image method, and c) infinity
mirror technique. In each case, the potential distribution is preserved for
0 ≤ x ≤ wx .

To provide a solution for an infinite strip, symmetry needs
to be restored. Following the approach outlined in [21],
the current through the {(−1, y), (0, y)} resistor within an
infinite resistive grid can be eliminated by applying the image
of the strip, as shown in Fig. 3b. The image current sources
produce a symmetric potential within the strip that equalizes
the potential at (−1, y) and (0, y), resulting in zero current
flowing between the pair of nodes. The width of the strip is
therefore doubled, while maintaining the potential distribution
within the strip. By iteratively repeating the image process for
the left and right boundaries, the topology shown in Fig. 3c
is produced. Intuitively, the topology is similar to placing an
object between two parallel mirrors, leading to infinite images
of the object.

The resulting voltage at (x0, y0) and (x, y) can be described,
respectively, as

Vx0,y0 =
∑
i∈Z

(
φi0(0, 0) + φi0(2x0 + 1, 0)

− φi0(x − x0, y − y0) − φi0(x + x0 + 1, y − y0)
)
,

(4)

Vx,y =
∑
i∈Z

( − φi0(0, 0) − φi0(2x + 1, 0)

+ φi0(x − x0, y − y0) + φi0(x + x0 + 1, y − y0)
)
,

(5)

where φi j (x, y) ≡ φ(x + 2iwx , y + 2 jwy). The effective
resistance is determined from the difference between the
voltage at (x0, y0) and (x, y),

Rwx ,∞ I =
∑
i∈Z

(
2φi0(0, 0) + φi0(2x0 + 1, 0)+φi0(2x + 1, 0)

− 2φi0(x −x0, y−y0)−2φi0(x + x0 + 1, y−y0)
)
.

(6)

Fig. 4. Effective resistance of an infinite strip of width wx = 25 between
point (x0, y0) and (x, y) for k = 1, a) x0 = y0 = 0, b) x0 = y0 = 5, and
c) x0 = y0 = 12. The point (x0, y0) is indicated by an ×.

From the effective resistance of a fully infinite mesh [21],

Rwx ,∞
r

=
∑
i∈Z

(
2�k

i0(x −x0, y−y0)+2�k
i0(x +x0 + 1, y − y0)

− 2�k
i0(0, 0) − �k

i0(2x0 + 1, 0) − �k
i0(2x + 1, 0),

(7)

where r and kr are the resistance of a single resistor in,
respectively, the x- and y-dimensions, and

�k
i j ≡ �k(x + 2iwx , y + 2 jwy) (8)

�k(x, y) ≡ k

2π

∫ π

0

1 − e−|x |α cos
(
yβ

)
sinh(α)

dβ, (9)

α = cosh−1(1 + k − k cos(β)). (10)

The contour of (7) is shown in Fig. 4. Note that the effective
resistance increases close to the boundaries of the strip, similar
to the half- and quarter-plane meshes [21] due to the limited
accessibility of the nodes near the boundaries. This behavior
is consistent with the Monotonicity Law where the effective
resistance increases with the removal of branches [18], [25].
Also note that the effective resistance evaluated from the
middle of the strip (x0 = wx −1

2 for wx = 2n + 1, n ∈ N0)
is symmetric with respect to x = x0 and y = y0 (see Fig. 4c).

B. Semi-Infinite Strip

Consider the case where the infinite strip is truncated,
bounding the strip between 0 and infinity along the y-
dimension. The effective resistance in this case is determined
by applying an image of the infinite strip along x = 0, as
shown in Fig. 5.

Rwx,∞/2

r
=

∑
n∈Z

(
2�k

i0(x − x0, y − y0) + 2�k
i0

× (x + x0 + 1, y + y0 + 1) + 2�k
i0

× (x − x0, y + y0 + 1) + 2�k
i0(x +x0+1, y−y0)

− 2�k
i0(0, 0) − �k

i0(2x0 + 1, 0) − �k
i0(2x + 1, 0)

− �k
i0(0, 2y0 + 1) − �k

i0(0, 2y + 1)

− �k
i0(2x0 + 1, 2y0 + 1) − �k

i0(2x + 1, 2y + 1)
)
.

(11)
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Fig. 5. Infinity mirror technique applied to a semi-infinite resistive strip of
width wx . The original semi-infinite strip is shaded. The potential distribution
is preserved for 0 ≤ x ≤ wx and y ∈ N0.

Fig. 6. Effective resistance of a semi-infinite strip of width wx = 25 between
point (x0, y0) and (x, y) for k = 1, a) x0 = y0 = 0, b) x0 = y0 = 5, and
c) x0 = y0 = 12. The point (x0, y0) is indicated by an ×.

A contour of (11) is shown in Fig. 6. As compared to Fig. 4,
the effective resistance increases at a higher rate, particularly
in the x-direction due to the truncation at y = 0. Note that the
effective resistance evaluated at the middle of the semi-infinite
strip is symmetric along the x-dimension, similar to the infinite
strip.

C. Finite Mesh

Consider the case where a semi-infinite strip is truncated at
y = wy − 1, resulting in a wx × wy finite mesh. The effective
resistance can be determined by applying the infinity mirror
technique in two dimensions, as shown in Fig. 7. This topology
can be modeled using the infinite mirror technique twice, along
the x- and y-directions,

Rwx ,wy =
∑
i∈Z

∑
j∈Z

(
2�k

i j (x − x0, y − y0)

+ 2�k
i j (x − x0, y + y0 + 1)

+ 2�k
i j (x + x0 + 1, y + y0 + 1)

+ 2�k
i j (x + x0 + 1, y − y0)

Fig. 7. Infinity mirror technique applied to a finite wx × wy resistive
mesh. The original mesh is shaded. The potential distribution is preserved for
0 ≤ x ≤ wx and 0 ≤ y ≤ wy .

Fig. 8. Effective resistance of a finite grid between (x0, y0) and (x, y) within
a 25×51 grid for k = 1, a) x0 = y0 = 0, b) x0 = 0, y0 = 12, and c) x0 = 12,
y0 = 25. The point (x0, y0) is indicated with an ×.

− �k
i j (2x0 + 1, 0) − �k

i j (2x0 + 1, 2y0 + 1)

− �k
i j (0, 2y0 + 1)) − �k

i j (2x + 1, 0)

− �k
i j (2x + 1, 2y + 1) − �k

i j (0, 2y + 1)

− 2�k
i j (0, 0)

)
. (12)

The resulting resistance in a 25×51 grid is shown in Fig. 8.
Several important features can be observed. Note that in the
y-direction, the effective resistance increases at a higher rate
as compared to the infinite and semi-infinite strips due to the
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Fig. 9. 2 × 2 resistive grid. The resistance is measured between nodes (0, 0)
and (1, 0)

TABLE I

SUMMANDS OF (12) FOR (x0, y0) = (0, 0) AND (x, y) = (0, 1)
IN A 2 × 2 RESISTIVE GRID

contribution of the image sources in y-dimension. Also note
that a uniform grid exhibits a high degree of symmetry.

To illustrate the infinity mirror technique on a practical
circuit, consider the extreme case of the 2 × 2 nonuniform
resistive network shown in Fig. 9. The effective resistance
between nodes (0, 0) and (1, 0) is, by Ohm’s law, 0.833 ohms.
Iteratively evaluating the summands of (12) around n =
k = 0 efficiently converges to the actual resistance, as listed
in Table I. Note that the summands of |n|, |k| ≥ 3 do not
exceed 0.001, indicating that only a small number of images
around the origin needs to be considered.

D. Generalization to Higher Dimensions

The proposed technique can be extended to higher dimen-
sions to evaluate the resistance of a multidimensional finite
grid. Consider an n-dimensional finite grid with dimen-
sions w = [w1, w2, . . . , wn]. The resistance is evaluated
between source node xs = [

x1
s , x2

s , . . . , xn
s

]
and target node

xt = [
x1

t , x2
t , . . . , xn

t

]
. Applying the image technique in each

dimension of the grid yields 2n source nodes around the origin,

Xs =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
s , x2

s , . . . xn
s

x1
s , x2

s , . . . −xn
s − 1

...
...

. . .
...

x1
s , −x2

s − 1, . . . xn
s

−x1
s − 1, x2

s , . . . xn
s

...
...

. . .
...

−x1
s − 1, −x2

s − 1, . . . −xn
s − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

Similarly, for the target node,

Xt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
t , x2

t , . . . xn
t

x1
t , x2

t , . . . −xn
t − 1

...
...

. . .
...

x1
t , −x2

t − 1, . . . xn
t

−x1
t − 1, x2

t , . . . xn
t

...
...

. . .
...

−x1
t − 1, −x2

t − 1, . . . −xn
t − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

Nodes in Xs and Xt are order sources since these nodes are
closest to the origin. The higher order sources arise from
translating the nodes in sets Xs and Xt along each dimension,
yielding countably infinite sets,

Xim
s = {x + 2w ◦ a; x ∈ Xs, a ∈ Z

n}, (15)

Xim
t = {x + 2w ◦ a; x ∈ Xt , a ∈ Z

n}, (16)

where w ◦ a denotes the Hadamard (element-wise) vector
product of vectors w and a. The potential difference between
nodes xs and xt is

V =
∑

x∈Xim
s

(φ(x − xs) − φ(x − xt ))

+
∑

x∈Xim
t

(φ(x − xt ) − φ(x − xs)). (17)

Assume the effective resistance of an n-dimensional infinite
grid is �(k,w)(x), where k is the ratio of the unit resistance
along each dimension to the unit resistance along the first
dimension. The effective resistance of a finite mesh can be
described as

Reff

r
=

∑
x∈Xim

s

(�(k,w)(x − xs) − �(k,w)(x − xt ))

+
∑

x∈Xim
t

(�(k,w)(x − xt ) − �(k,w)(x − xs)). (18)

III. SIMPLIFICATION OF THE EFFECTIVE

RESISTANCE EXPRESSIONS

Although the effective resistance is accurately determined
with (7), (11), and (12), more computationally efficient equa-
tions are desirable. An efficient approximation of (9) is
described in [21],

�̂k(x, y) =
√

k

4π

[
ln

(
x2 + ky2

)
+ 2 ln(π) + γ

] +
4∑

i=0

ai k
i ,

(19)

where γ ≈ 0.5772 is the Euler-Mascheroni constant [12], and
the coefficients ai of the expression are listed in Table II.

The error of (19) as compared to (9) is shown in Fig. 10.
Note that the error approaches zero for large x and y.
At small values of x and y, the error dramatically increases,
significantly affecting the accuracy of the effective resistance.
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TABLE II

COEFFICIENTS FOR THE POLYNOMIAL APPROXIMATION OF J3 (19) [21]

Fig. 10. Relative error ε between (9) and (19) for 0 ≤ x ≤ 10, 0 ≤ y ≤ 25,
and 1 ≤ k ≤ 30. a) Maximum error, and b) average error.

To alleviate this issue, the following function is
proposed,

	k
i j (x, y) = 	k(x + 2iwx , y + 2 jwy) (20)

	k(x, y) =
{

�k(x, y), if ε(x, y) > 10−2 (21a)

�̂k(x, y), otherwise; (21b)

where ε(x, y) is the relative error of (19) as compared to (9).
Since �k(x, y) only needs to be evaluated for a small subset
of nodes where the error of (19) is large, the evaluation of
�k(x, y) can be replaced with a look-up table, providing an
effective tradeoff between computational speed and accuracy.

Evaluation of the effective resistance in a finite mesh
requires computing a double-infinite sum. The series in (12),
however, quickly converges to 0. Using additional terms results
in higher accuracy while requiring greater computational time.
It is of interest to determine the optimal number of terms in
series (12) to achieve acceptable accuracy in minimum time.
Consider the following approximate equation for the effective

resistance of a finite mesh,

RN,M
wx ,wy

=
N∑

i=−N

M∑
j=−M

(
2�k

i j (x − x0, y − y0)

+ 2�k
i j (x − x0, y + y0 + 1)

+ 2�k
i j (x + x0 + 1, y + y0 + 1)

+ 2�k
i j (x + x0 + 1, y − y0)

− �k
i j (2x0 + 1, 0) − �k

i j (2x0 + 1, 2y0 + 1)

− �k
i j (0, 2y0 + 1)) − �k

i j (2x + 1, 0)

− �k
i j (2x + 1, 2y + 1) − �k

i j (0, 2y + 1)

− 2�k
i j (0, 0)

)
, (22)

where N, M ∈ N0 are the number of iterations required to
evaluate the effective resistance of a finite mesh. The accuracy
of (22) is evaluated for an 11 ×11, 25 ×25, and 51 ×51 grid.
The relative error of (22) is illustrated in Fig. 11. Observe that
in all cases setting N = K = 4 is sufficient to achieve 0.3%
accuracy. Note that due to the low error of (21) for small x and
y, the error is smaller if the effective resistance is evaluated
between nearby nodes.

IV. CASE STUDIES

The primary contribution of this paper is the efficient
estimation of the effective resistance of a finite grid of arbitrary
size, exhibiting constant complexity. The proposed frame-
work is particularly suitable for circuit analysis techniques
based on an effective resistance [2], [3]. In this section,
three applications of the proposed framework are presented.
In Section IV-A, a method accelerating the nodal analysis of a
grid is presented. In Section IV-B, this method is applied to the
analysis of a capacitive touch screen. In Section IV-C, a three-
dimensional analysis of resistive substrate noise is described.

A. Mesh Reduction Based on Effective Resistance

The nodal analysis process can be significantly accelerated
by applying these effective resistance techniques if the grid
dimensions are large and the number of nodes of interest are
small. Consider a large grid 
 with dimensions Nx × Ny .
Define the nodes of interest as a set,

S ≡ Sv ∪ Si ∪ So, (23)

where Sv and Si are subsets of nodes connected to, respec-
tively, the voltage sources and current sources, and So is a
subset of other nodes of interest. If the number of nodes of
interest |S| = n is much smaller than the total number of
nodes within the network |
| = N , the effective resistance
technique can significantly accelerate the analysis of IR drops
within a grid. The entire network 
 can be reduced to a smaller
network 
S by preserving the pairwise effective conductance.
The conductance matrix G ∈ R

n×n of this reduced network
is [22], [26]

G† = −1

2

(
RS − 1

n

(
1n,n RS + RS1n,n

) + 1

n2 1n,1 RS11,n

)
,

(24)
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Fig. 11. Relative error of normalized effective resistance between (0, 0) and (x, y) determined from (22) for N = K ∈ [0, 5] as compared to a nodal analysis
within a mesh with size a) 11 × 11, b) 25 × 25, and c) 51 × 51.

where G† denotes the Moore-Penrose pseudoinverse of matrix
G, RS ∈ R

n×n
≥0 is the matrix of the effective resistance between

each pair of nodes in S, and 1a,b is an a × b matrix with all
entries equal to one. After the conductance matrix is recovered,
the reduced network can be evaluated by solving the linear
system,

[
G B
BT 0

] [
V
I

]
=

[
J
F

]
, (25)

where V and I are, respectively, the node voltages and currents
through the voltage sources. B , J , and F encode the current
and voltage sources.

The speed of (24) and (25) for estimating the effective
resistance within a mesh is compared to nodal analysis using
the Numpy and Scipy Python packages [27] on an eight core
3.40 GHz Intel Core i7-6700 machine with 24 GB RAM.
The comparison is depicted in Fig. 12. Nodal analysis in
circuits larger than 107 nodes could not be performed due
to insufficient memory. Note that while the computational
time of the nodal analysis process scales with grid size N ,
the computational time of the infinity mirror technique scales
with the number of nodes of interest n. The bottom-right
corner of the plot in Fig. 12a is the area where the grid size is
large and the number of nodes of interest is small. The infinity
mirror technique provides the largest speedup in this situation.
In Fig. 12b, the relationship between the speedup due to (24)
and (25) and the fraction of nodes of interest is presented.
The results suggest that the framework provides significant
computational speedup if finding the voltage at only 0.23% of
the nodes is required (i.e., one in 430 nodes). For example, in a
103 × 104 grid, determining the voltage at 1,000 nodes using
nodal analysis would require 3,430 seconds. Applying (24)
and (25) results in a 17 fold speedup, requiring only 196 sec-
onds to complete. If the number of nodes of interest is reduced
to 100, the speedup reaches 1,400, completing in 2.37 seconds.

B. Resistive Noise in Capacitive Touch Screen

A possible application of the infinity mirror technique is
the analysis of conductive media. An example of a conductive
medium is a capacitive screen. The typical structure of a
capacitive touch screen is shown in Fig. 13a [28]. An important
component of the touch screen panel is the display cath-
ode electrode providing a reference voltage for the screen.
Resistive noise in the electrode layer of the display cathode
may affect the accuracy of the touch recognition process. The
accuracy of the touch sensor can therefore be enhanced by
considering resistive noise during the sensor design process.
An accurate estimate of the resistance typically requires sig-
nificant computational time due to the finite element method
extraction process often utilized for this task. The analysis
can however be vastly accelerated by applying the infinity
mirror technique to the equivalent model of the panel shown
in Fig. 13b [28]. The method of mesh reduction presented in
Section IV-A is utilized to accelerate this analysis process.

The results for evaluating the effective resistance for trace
resistances of 0.1 � and 100 � are shown, respectively,
in Figs. 13c and 13d. These results are consistent with the Q3D
extraction process described in [28], significantly reducing
the analysis time while maintaining the high accuracy of the
effective resistance estimation.

C. Resistive Substrate Noise

A three-dimensional mesh is widely utilized to model
conductive media, including thermal paths and substrate noise.
Substrate noise is a common issue in mixed-signal VLSI
circuits. While several advanced techniques for mitigation of
substrate coupling exist, including guard rings and silicon-on-
insulator technology [29], these techniques may significantly
complicate the fabrication process. It is therefore necessary to
estimate the magnitude of the substrate noise. The application
of a three-dimensional network to substrate noise analysis is
presented in this case study.
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Fig. 12. Comparison of (24) and (25) to nodal analysis for 10 < n < 200 and

104 < N < 107. (a) Computational time (in seconds) to calculate the voltage
at n nodes of interest in a grid with N nodes. The black line indicates n and
N for which both techniques exhibit approximately equal time. (b) Speedup
due to the use of (24) as compared to a pure nodal analysis as a function
of n

N .

A frequent scenario in mixed-signal circuits is noise cou-
pling between a digital aggressor and an analog victim.
An equivalent circuit model of a mixed-signal circuit is shown
in Fig. 14. The current I in the digital circuit would ideally
flow into the digital ground. With substrate coupling, however,
a sizable current flows into the analog ground, affecting the
performance of the sensitive analog circuits.

The voltage vga at the analog ground terminal is

vga = I Rga Rgd

Rgd + Rs + Rga
, (26)

where Rgd and Rga are, respectively, the resistance of the
digital and analog ground distribution network, and Rs is
the substrate resistance. Note that if the substrate resistance
is large, the analog ground voltage converges to zero while

Fig. 13. Estimation of the effective resistance in a touch screen panel.
a) Structure of the panel, b) equivalent circuit model, c) effective resistance
with a 0.1 ohm trace resistance, and d) effective resistance with a 100 ohm
trace resistance.

reducing the substrate resistance, increasing the analog ground
voltage.

The infinity mirror technique can be used to evaluate the
effective resistance between substrate contacts. Consider a
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Fig. 14. Resistive substrate coupling mechanism in a mixed-signal com-
plementary metal-oxide-semiconductor (CMOS) circuit. The substrate ground
contacts for the analog and digital grounds are connected to the global ground
through, respectively, an analog and digital ground distribution network.
(a) Side view of the substrate, and (b) equivalent circuit model of the noise
injection process.

TABLE III

PARAMETERS FOR SUBSTRATE NOISE EVALUATION

uniform three-dimensional grid with unit resistance rs , infinite
x-y dimensions, and finite z-dimension wz . The analog and
digital substrate contacts are represented by two terminals on
the top surface of the grid separated by an (x, y, 0) vector.
Applying (18) yields

Rs = 2rs

∑
p∈Z

�00p(x, y, 0) + �00p(x, y, 1)

− �00p(0, 0, 0) − �00p(0, 0, 1), (27)

where

�i j p(x, y, z) = �(x + 2wx i, y + 2wy j, z + 2wz p). (28)

Expression (27) is applied to (26) to determine the minimum
distance between analog ground terminals. The parameters are
listed in Table III. The resulting ground voltage is shown
in Fig. 15. If the spacing is small, the substrate noise is signifi-
cantly lower with increasing separation. After 20 μm, however,
the space does not have a significant effect on the coupling
noise. Note again that the analysis time is significantly reduced
by avoiding a costly nodal analysis process [30]. The resis-
tance measurement for each separation is completed on aver-
age in 2.76 seconds. A nodal analysis of a three-dimensional
substrate with a size of 200 μm × 200 μm × 10 μm requires
approximately 30.2 seconds, consistent with Fig. 12, indicating
an approximate tenfold speedup.

Fig. 15. Analog ground voltage as a function of the distance between the
digital and analog ground terminals.

V. CONCLUSIONS

An infinity mirror technique is proposed here that maps
a rectangular resistive grid structure with finite dimensions
into an infinite grid. Extending the contributions in [21],
where semi-infinite structures are considered, the methodology
described here is applicable to those structures where one
or both dimensions are finite. In addition, the framework
is extended to higher dimensional topologies, evaluating the
effective resistance in finite structures with three and more
dimensions. The proposed expressions exhibit high accuracy
and outperform the nodal analysis method in terms of compu-
tational speed. Using the infinity mirror technique, the effec-
tive resistance between two points in an anisotropic finite
mesh can be determined within 1% accuracy. Several orders
of magnitude speedup in IR drop analysis in large grids is
achieved in case studies by utilizing closed-form expressions
for the effective resistance. The most significant reduction in
computational time is achieved in those cases where only a
small fraction of nodes needs to be evaluated. These results
can be beneficial to a variety of applications, including power
grid and substrate analysis in VLSI circuits, estimation of
commute times in random walks, and the analysis of isotropic
and anisotropic conductive media [22]–[24], [31]–[34].
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