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Abstract—Superconductive Rapid Single Flux Quantum
(RSFQ) is an emerging cryogenic technology promising a sig-
nificant boost in performance and ultra-low power consumption.
The operating frequency achieved by RSFQ digital integrated
circuits is several orders of magnitude greater than traditional
CMOS circuits. The fundamental difference of RSFQ circuits,
however, renders traditional clocking techniques appropriate for
CMOS unsuitable for RSFQ technology. Most RSFQ logic gates,
such as AND and OR, are sequential in nature. The number
of pipeline stages is therefore significantly greater in RSFQ as
compared to CMOS, complicating the clock distribution network
design process. This issue is further exacerbated with the need
for splitters to achieve a fanout greater than one and the need
for transmission lines rather than ordinary metallic wires as in
CMOS.

In this work, QuCTS — single flux Quantum Clock Tree
Synthesis — is presented. QuCTS utilizes a two stage framework
for synthesizing clock networks. In the clock skew scheduling
stage, the clock signal arrival time of each gate is chosen to
maximize the robustness of the circuit to timing variations. In
the clock tree synthesis stage, the layout of the clock distribution
network is generated based on a novel delay equilibration
technique. QuCTS is the first clock tree synthesis tool for RSFQ
circuits utilizing useful clock skew. The synthesized network
satisfies the clock arrival time requirements while minimizing the
associated overhead, such as the interconnect length and number
of delay elements. The tool is validated on a set of benchmark
circuits. In a prototypical case study, a clock tree is generated
for the AMD2901 with 1,049 clock sinks in 53 minutes while
satisfying the clock arrival time.

I. INTRODUCTION

Rapid single flux quantum (RSFQ) technology offers a
range of advantages as compared to CMOS. Several orders
of magnitude greater operating frequency and three orders
of magnitude lower power are among the most prominent
advantages of RSFQ. Substantial progress has been made in
the field of superconductive electronics in the past decades.
SFQ manufacturing technology is capable of accommodating
over 6,000 Josephson junctions (JJ) per mm2 [1]. An 8 bit
superconductive microprocessor operating at a frequency of
80 gigahertz has been successfully fabricated [2]. Ongoing
advancements in electronic design automation for RSFQ cir-
cuits are expected to enable the large scale integration of
superconductive digital systems [3], [4].
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Beyond the necessity for cryogenic operation below approx-
imately 4K and the relatively low density on-chip integration
as compared to CMOS, the design of a robust on-chip clock
distribution network remains a significant challenge in RSFQ
systems [5]. The fundamental properties of RSFQ technology
are described in the seminal work of Likharev and Semenov
[6]. Unlike traditional CMOS, where the information is rep-
resented with a high or low DC voltage level, short quantized
voltage pulses transfer information in RSFQ. A logical high or
low is represented, respectively, by the presence or absence of
a single flux quantum (SFQ) pulse within a certain time inter-
val. Most logic gates in RSFQ are therefore sequential, such
as AND and OR gates that are combinatorial in CMOS. This
structure drastically increases the pipeline depth as compared
to CMOS, complicating the clock network design process. The
complexity of the clock distribution network is further exac-
erbated by the interconnect structures in RSFQ systems [7].
Unlike CMOS, where the gates can be connected with a simple
wire, RSFQ interconnect is either a passive transmission line
(PTL) requiring a driver, receiver, and impedance matching
[8], or an active Josephson transmission line (JTL) requiring
bias current for each Josephson junction. Finally, most RSFQ
gates have a fanout of one. A splitter gate is used to generate
two (or more) SFQ pulses from an input signal [7], [9].

Different approaches to clocking RSFQ circuits have been
reported in the literature. Clockless self-timed systems have
been proposed [10], [11], [12], [13]. An effective operat-
ing frequency of 20 gigahertz has been demonstrated while
eliminating the overhead of the clock distribution network.
Self-timed circuits, however, remain vulnerable to timing
violations, exhibit unpredictable performance due to sensitivity
to logic delays, and use handshaking circuitry that requires
significant area [14].

Hierarchical chains of homogeneous clover-leaves clocking
(HC)2LC are described in [15]. The primary advantage of
this structure is robustness since the clock period of the system
adapts to the slowest hierarchical chain. Another advantage
is the elimination of race condition hazards due to forced
counter-clocking [5], [15]. The primary drawback is reduced
clock speed since the worst case path determines the clock
period of the entire system. Another drawback of this method
is underutilization of clock skew as an additional degree of
design freedom. Counter-clocking increases the setup time
constraints which limit the minimum clock period [5].

A minimum skew clock tree synthesis algorithm for SFQ
circuits is proposed in [16]. The algorithm incorporates the
CMOS-based deferred merge embedding (DME) algorithm
[17] to generate a zero skew clock tree. Due to the non-
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negligible dimensions of the splitters, the clock tree generated
by DME typically violates RSFQ design rules. A legalization
step is therefore proposed [16] to correct the layout at the
cost of introducing small skew into the clock tree. Minimizing
the clock skew, however, results in a suboptimal clock fre-
quency [18], and does not guarantee correct functionality [19].
Furthermore, nonzero clock skew in data paths can improve
the performance and robustness of the synchronous system
[20]. With clock skew scheduling, extra delay in the fast data
paths is exploited to decrease the effective delay of the critical
paths, thereby increasing the maximum attainable operating
frequency [18], [21], [22], [23], [24].

While clock skew optimization may provide a significant
gain in performance and robustness, it is often overlooked
in existing RSFQ clocking approaches. To bridge this gap,
QuCTS, a single flux Quantum Clock Tree Synthesis algo-
rithm, is introduced. In the clock skew scheduling stage, the
arrival time of each clocked gate is based on the algorithm
from [18], [25]. Limitations of RSFQ technology, such as
the use of splitters and limited fanout, prevent the direct
application of CMOS techniques for clock tree synthesis. A
novel method for generating a clock tree topology for RSFQ
systems based on hierarchical clustering is proposed here.
Unlike CMOS, the RSFQ clock tree is complicated by many
splitters and delay elements whose placement is restricted to
a set of vacant gate cells. A primary contribution of this
paper is the delay equilibration algorithm for RSFQ clock tree
layout synthesis. By judiciously placing the splitters and delay
elements and adjusting the interconnect, the clock arrival times
determined from the clock skew scheduling stage are satisfied.

This paper is organized as follows. In section II, the clock
skew scheduling algorithm is presented. The binary clock
tree synthesis process is described in section III, followed by
the delay equilibration process presented in section IV. The
performance of the algorithm is evaluated in the case study
and benchmark circuits presented in section V, followed by
the conclusions in section VI.

II. CLOCK SKEW SCHEDULING

Clock skew scheduling is a powerful technique to maximize
the speed and robustness of a synchronous system [18], [22],
[23]. Despite the potential benefits of useful clock skew, it
is often viewed as a parasitic effect requiring minimization
[26], [27]. In addition, achieving zero clock skew is quite
difficult due to process and environmental variations as well
as electromagnetic interference that permeate not only CMOS
but also RSFQ circuits [5], [15], [28].

The first stage of QuCTS, presented in this section, mitigates
this issue by adapting clock skew scheduling within the RSFQ
circuit design process. QuCTS operates in four stages. The
sequential circuit topology, described in Verilog, is initially
converted into a sequential graph. The minimum clock period
is determined by evaluating the expected delay and delay
uncertainty of each data path. The permissible range (PR) of
each data path is a function of the clock skew in sequentially-
adjacent registers [19], [20], [24]. The clock skew schedule
is generated using a quadratic programming algorithm that
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Fig. 1. Processing of inputs and outputs of a logic circuit in a sequential
graph. a) An initial system with inputs x1, . . . , xm and outputs y1, . . . , yn.
Note that the input and output edges (signal nets in Verilog) typically have one
floating terminal. b) Sequential graph representation of the input and output
edges in QuCTS. The floating terminals of the input and output edges are
connected to a dummy I/O node. This node acts as a tail (source) of all input
edges and a head (target) of all output edges. The I/O node eliminates any
clock skew between the circuit terminals.

maximizes the robustness of the circuit to parameter variations
[18], [25]. The clock skew schedule is converted into a
schedule of clock arrival times that is passed to the clock tree
synthesis algorithm.

A. Sequential Graph
The first step in the clock skew scheduling process is

conversion of the circuit topology into a directed sequential
graph G = (V,E, dmin : E → R, Dmax : E → R), where
V is the set of nodes, E is the set of edges, and dmin and
Dmax are, respectively, the minimum and maximum delay of
an edge in E. A typical sequential circuit consists of inputs,
outputs, clocked gates, non-clocked gates, and interconnects.
For brevity, the clocked and non-clocked gates are referred
to as, respectively, registers and gates. Each edge (i, j) ∈ E
represents a combinational data path pi,j from a source to
target register. The range of delays di,j = [dmini,j , Dmax

i,j ] of an
edge (i, j) within a graph is the sum of the delays along a
data path,

di,j =
∑
k∈pi,j

(dgatek + dintk ), (1)

where dintk denotes the range of delay of the interconnect
between gate k and the next gate, and dgatek denotes the range
of the input-to-output delay of gate k or a clock-to-output
delay of register k. The gate and register delays are supplied
externally as input data.

The inputs and outputs of a sequential circuit are often
described in Verilog as floating signal nets. This structure is
not supported in a graph where the edges require both source
and target nodes. Furthermore, it is often desired that the clock
skew between the input and output nodes of a circuit is zero
[18]. A dummy I/O node is therefore added to the sequential
graph, as illustrated in Fig. 1. The I/O node is the tail (source)
of each input edge and the head (target) of each output edge.
The dummy node is treated as a standard node during the
clock skew scheduling process. Since a node cannot have a
non-zero clock skew with itself, zero clock skew is ensured
among the circuit inputs and outputs.

B. Minimum Clock Period
In the zero clock skew approach, the minimum clock period

is determined by the delay of the critical paths. In a non-
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Fig. 2. Constraints of the minimum clock period within a sequential circuit. a)
Cycle path with n registers starting with node i. The dotted arrows represent
the connection to external circuitry. b) Reconvergent path between registers
d and c.

zero clock skew system, however, finding the minimum clock
period requires a significantly more sophisticated process.
The minimum clock period is determined by the cycles and
reconvergent paths within the sequential graph [18], as shown
in, respectively, Figs. 2a and 2b.

An example of a sequential circuit containing cycle pii with
n nodes is shown in Fig. 2a. To ensure correct operation of the
circuit including this cycle, the clock period cannot be smaller
than

T i =
1

n

∑
j∈pii

(Dmax
j,j+1 + δsj+1), (2)

where δsj+1 is the setup time of the gate following gate j.
The clock skew within the cycle is fixed at zero, since, as
previously mentioned, a register cannot have a non-zero clock
skew with itself [24]. Equation (2) therefore requires the
average propagation delay of a data path within a cycle to not
be greater than the clock period. Finding the minimum clock
period requires determining the cycles within the sequential
graph G. The computational complexity of finding all cycles
within a graph is O((|V | + |E|)(nc + 1)), where nc is the
number of cycles within a graph.

The reconvergent paths are distinct sequential paths that
begin at the same divergent register d and end at the same
convergent register c. Optimization of these reconvergent paths
includes delay insertion, i.e., intentionally adding delay to
specific data paths to align the arrival time of the signals,
thereby reducing the minimum clock period. Consider the
example illustrated in Fig. 2b. The short path (s1, . . . , sn) with
n nodes has the smallest propagation delay, and the long path
(l1, . . . , lm) with m nodes has the largest propagation delay.
The minimum clock period T dc due to the reconvergent paths
between nodes d and c is

T dc =
Dl −Ds + δsc + δhc
|m− n+ 1|

, (3)

where Dl and Ds are, respectively, the maximum propagation
delay of pl and minimum propagation delay of ps, and δsc and

δhc are, respectively, the setup and hold time of convergent
register c. While delay padding may reduce the minimum
clock period, this method requires finding all reconvergent
paths within graph G. The complexity of finding a single
simple path in a directed graph is O(|V | + |E|) [29]. The
number of simple paths can however be prohibitively large,
up to |V |! in a fully connected graph. Depending upon the
complexity, an integrated circuit may contain hundreds of
thousands of nodes, leading to an exorbitant number of simple
paths. Delay insertion is therefore not practical for large
circuits. An alternative approach, adapted from [30], is utilized
in the algorithm presented here. The minimum clock period is
determined by the delay uncertainty of the edges,

Tmini,j = max
(i,j)∈E

(Dmax
i,j − dmini,j + δsj + δhi ), (4)

where δhi is the hold time of register i.
The minimum clock period of the overall system is

Tmin = max

(
max

(i,j)∈E
(Dmax

i,j − dmini,j + δsj + δhi ),max
i∈V

(T i)

)
.

(5)
This minimum clock period determines the target clock pe-
riod in the clock skew scheduling process, as described in
subsection II-C. Note that although setting the clock period
to Tmin maximizes the performance of the system, a higher
clock period can be chosen to improve other metrics, such as
robustness to parameter variations [19], [20].

C. Clock Skew Optimization
Once the minimum clock period is determined, clock skew

optimization is performed in two steps. The permissible range
(PR) [19], [20], [31] of the clock skew for each path is used
to form an objective function. The basis cycles are determined
within the graph to form a constraint function. The clock skew
schedule is optimized for robustness to parameter variations.

The permissible range is the range of clock skew between
sequentially-adjacent registers i and j that satisfy the setup
and hold constraints of a circuit [24], [31], defined as

PRi,j =
[
−dmini,j + δhi , TCP −Dmax

i,j − δsj
]
, (6)

where TCP is the target clock period. In vector form, the upper
and lower bound of the permissible range for every combina-
tional data path is expressed as vectors smin, smax ∈ R|E|.
To maximize the robustness of the system, the clock skew of
each data path is maintained at the center s∗ of the PR,

s∗ =
1

2
(smin + smax). (7)

Clock skew deviations arising from parameter variations are
therefore less likely to cause a setup or hold time violation.
Note however that due to timing constraints, such as cycles,
maintaining the clock skew at the center of the PR is often not
possible [20]. The scheduling process therefore sets each target
clock skew as close to the center of the PR while satisfying
the local timing constraints.

Let s ∈ R|E| be the vector of clock skews for each local
data path. The clock skew scheduling optimization problem is
expressed as

Minimize:
s

||s− s∗||2 (8)

3



4

subject to

smin
i ≤ si ≤ simax∀i ∈ N, i ≤ |E|, (9)

Bs = 0, (10)

where smin
i , si, and simax are the ith element of, respectively,

smin, s, and smax; 0 ∈ R|E| is the zero vector; and B ∈
R(|E|−|V |+1)×|E| is the circuit connectivity matrix of graph G
[18]. With (8), the clock skew of each data path is placed as
close to the center of the permissible range as possible [24],
[20]. Expression (9) requires the clock skew of each data path
to be within the permissible range. Expression (10) requires
the clock skew within a cycle to be zero. Each row bi in B
represents an independent cycle in G. The entry bi,j is equal
to 1 or −1 if the edge, respectively, follows or opposes the
direction of the cycle, and 0 if the edge does not belong to the
cycle. An efficient solution of this problem can be achieved
with quadratic programming (QP) in O(|V |3) time [25].

Once the final clock skew schedule is generated, a schedule
of clock arrival times is produced. An arbitrary node x is
marked as a reference node with a clock arrival time of 0.
The clock arrival time at each register is determined using the
fundamental equation of clock skew [24],

si,f = τi − τf , (11)

where τi and τf are, respectively, the clock arrival time at the
initial and final register of a local data path. The arrival time
τp of the register p preceding register x is

τp = sp,x + τx, (12)

where sp,x is the clock skew of the edge (p, x) determined
from the optimization process. Similarly, the arrival time τs
of the successor s of register x is

τs = τx − sx,s, (13)

where sp,x is the clock skew of the edge (x, s). The process is
repeated until the arrival time at each register is determined.
The resulting schedule of arrival times is passed to the clock
tree synthesis algorithm, as described in section III.

III. CLOCK TREE SYNTHESIS

Once the clock arrival time of each logic gate is determined,
the objective is to generate a clock network that satisfies these
arrival times. A single external clock source is assumed in
QuCTS. A tree structure distributes the clock signal from
a single source to multiple sinks [32]. Due to the limited
fanout of RSFQ gates, splitters are required to distribute the
clock signal to the many gates within a circuit. Standard
splitters provide a fanout of two. Non-standard splitters with a
higher fanout exist, although the bias margins are significantly
degraded as compared to standard splitters [7], [9]. A binary
clock tree is therefore produced by QuCTS.

To distribute the clock signal to N gates, N − 1 splitters
are required, forming a directed binary tree,

T = (VT , ET ), (14)
VT = VSPL ∪ Vsink, (15)

where Vsink is the set of clock sinks (logic gates), and VSPL
is the set of splitters. The leaf nodes within T (i.e., nodes
with zero fanout) correspond to the clock sinks. Other nodes
correspond to splitters and have a fanout of two. The root node
corresponds to the hierarchically topmost splitter, as shown
in Fig. 3. The clock signal initially arrives at the root node
within the clock tree and passes to the splitters corresponding
to child nodes 0 and 1. At each successive node of tree T , the
clock signal is split into multiple signals that eventually arrive
at each sink within a cluster. The arrival time of the clock
signal is the delay from the clock signal source (root node)
to the clock sink. This delay is comprised of splitter delays,
interconnect delay, and any intentional delay. By varying these
components, the arrival time of the signal can be controlled
to satisfy the timing requirements of each clock sink. The
objective of the clock tree synthesis process in RSFQ is to
produce a binary clock tree that delivers the clock signal at a
precise time with minimum interconnect and junction area.

The first step in the clock tree synthesis process is to
produce a binary tree. A common approach in binary tree
synthesis is clustering [33], as illustrated in Fig. 3. Each gate
is represented as a point in a two- or three-dimensional space.
The location of each gate is represented by an X and Y
coordinate, and the weighted clock signal wT serves as a
third dimension. The importance of the clock arrival time is
controlled by the weight parameter w. If w is large, distant
gates exhibiting similar arrival times are grouped within the
same cluster. Fewer delay elements are therefore needed in this
case since the difference in arrival time of the gates within a
cluster is generally small. In contrast, with the lower weight,
the gates are grouped by physical proximity, disregarding any
difference in arrival times. Shorter interconnects are required
to connect the gates, since the distance between the target
nodes is smaller. More delay elements are however required
to accommodate the difference in arrival time of the clock
signals.

To evaluate the effect of the clustering algorithm on the
clock tree topology, several clustering algorithms are consid-
ered, including K-means [34], BIRCH [35], and agglomerative
clustering [36]. Several layout patterns are used to evaluate the
quality and speed of generating a clock tree. K-means clus-
tering and BIRCH performed best, generating similar, more
balanced trees with fewer levels, as compared to agglomerative
clustering. The balanced trees exhibit a smaller variation in
delay from the clock source to the gates and therefore require
fewer delay elements and less wire snaking. BIRCH exhibited
the smallest runtime, requiring approximately half the time
for generating a clock tree as compared to K-Means. The
result of BIRCH was however highly sensitive to the threshold
parameter. Conversely, K-means is slower but consistently
provides a more balanced tree. Since the clock tree topology
requires negligible time as compared to the overall runtime
of QuCTS, a more robust K-means algorithm is incorporated
into QuCTS.

A binary clock tree is a directed tree, where each node
corresponds to a splitter. The topmost (root) splitter sr ∈ T
receives a clock pulse from an external clock source. The SFQ
pulse at each clock sink is delivered through the parent splitter.
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After the first clustering step, the gates are decomposed into
two groups, c0 and c1. The two SFQ output pulses of sr are
delivered to clusters c0 and c1 via corresponding splitters,
respectively, s0 and s1. The SFQ pulse at each clock sink
within c0 (c1) is delivered through splitter s0 (s1), as shown
in Fig. 3. Each cluster is iteratively decomposed into a pair
of subclusters until the size of the cluster is a single gate. A
splitter is assigned to each nonsingular cluster, hierarchically
distributing the clock signal to the clock sinks.

c0 c1

c00 c10

c01 c11

a)

sr

s00 s01

s0 s1

s10 s11

b)
Fig. 3. Binary clock tree generation based on clustering. a) Hierarchical
clustering of the gates based on location. All of the gates are initially placed
within a single top level cluster c (top row). The set of gates are decomposed
into two clusters, c0 and c1 (middle row), which, in turn, are further divided
into smaller clusters (bottom row), until the clusters contain only a single
clock sink. b) Binary clock tree T with each node representing a splitter. The
top level cluster corresponds to the root splitter sr . Gates within c0 and c1
receive the clock signal from the two branches of the root splitter sr . s0 and
s1 are added to the binary clock tree as successors of the root splitter sr to
distribute the SFQ clock pulse from sr to the corresponding clusters. The s00
and s01 (s10 and s11) splitters therefore become the successors of splitter s0
(s1) to distribute the clock pulse to, respectively, c00 and c01 (c10 and c11).
Similarly, each successive clustering step adds two new successor splitters to
the corresponding preceding node, producing a binary clock tree.

IV. DELAY EQUILIBRATION

The binary tree generation process described in the previous
section is a guideline for establishing the hierarchy of the
gates. The actual connections are determined by a delay equi-
libration algorithm illustrated in Algorithm 1. To explain this
process, consider the two gates shown in Fig. 4a. Connecting
a splitter to these gates via the shortest path is not suitable
since a precise arrival time needs to be satisfied. The delay
from the splitter to both gates determines the arrival time of
the splitter. Delay equilibration is therefore required to satisfy
the arrival time at each gate. A splitter can be placed closer
to the gate with an earlier arrival time, thereby delivering the
SFQ clock pulse earlier (see Fig. 4b). Practically, however,
the splitter placement is not arbitrary but limited by physical
layout constraints. In addition, if the difference in arrival time
is large, the splitter placement may be insufficient to balance
the arrival time of the clock signals.

Algorithm 1: Given a set of gates within the circuit U , two
gates A ∈ U and B ∈ U , target clock arrival times τA and
τB , wire pitch h, set of vacant cells P , set of delays realizable
by a delay element D, and set of routing obstacles O, place
a splitter and, optionally, delay elements to deliver the clock
signal to A and B at, respectively, τA and τB

procedure DELAY_EQUILIBRATION;
Input: A, B, τA, τB , h, P , O
PAB ← CLOSEST_CELLS{P,A,B};
Vp ← {A,B} ∪ PAB ;
Ep ← V 2

p \ {A,B};
w(a, b)← |xa − xb|+ |ya − yb|;
Gp ← (Vp, Ep, w : Ep → R);
qA, qB , gk, d

∗
A, d

∗
B ← PROXY_PATH(Gp, A,B, τA, τB , D);

wireA, wireB ,∆t, O ← HANAN(qA, qB , gk, τA, τB , h,O);
if ∆t > ε then

wireA ← AURA_SNAKING(wireA,∆t, O, U);
else if ∆t < −ε then

wireB ← AURA_SNAKING(wireB ,−∆t, O, U);
τSPL ← τA−d(wireA)+τB−d(wireB)

2 − dSPL;
return wireA, wireB , gk, τSPL
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Fig. 4. Example of delay equilibration process. Two gates, A and B, require
a clock pulse to arrive at, respectively, 25 and 15 time units. The clock
signal initially arrives at the splitter, where two SFQ pulses for each gate are
generated. a) An example of an invalid topology. While the delay requirement
of B is satisfied, A receives the SFQ pulse too early, producing a timing
violation. b) Strategic placement of the splitter closer to B reduces the delay
from the splitter to B and increases the delay from the splitter to A. c) The
wire connecting the splitter to A is intentionally lengthened to increase the
delay. d) The delay element is placed between the splitter and A, thereby
increasing the delay of the path.

In CMOS, a variety of techniques are available to adjust
the wire delay, including wire snaking, wire sizing, dummy
wire insertion, and active delay elements [37], [38], [39]. In
RSFQ, passive transmission lines require impedance match-
ing, complicating the wire sizing and dummy wire insertion
process. The wire snaking technique, illustrated in Fig. 4c,
is suitable for RSFQ, albeit requiring significant area for a
modest increase in delay. A significantly larger delay with
a relatively small area can be achieved with active delay
elements. A JTL can be used as a delay element by controlling
the bias current of the Josephson junctions [7]. JTLs, however,
require dedicated space within the device layer. JTLs are
therefore more suitable for providing large delays while PTL-
based wire snaking can be used to tune the path delay.
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Delay equilibration of a pair of gates requires the precise
location of each gate. Since only the position of the clock
sinks is initially known, the algorithm generates the clock tree
layout in a reverse breadth first search order. The gates are
processed in pairs, starting from the farthermost leaves (sinks)
of the tree.

The embedding of the clock tree into the layout is ac-
complished in three steps. In the coarse embedding step
presented in section IV-A, the location of the splitter, JTL
delay elements, and initial PTL routing for every pair of
nodes in a binary tree is determined. The local portion of
the layout is converted into a proxy graph where the potential
location of the splitters and JTLs is determined. The graph is
evaluated to determine the location and delay of the splitters
and JTLs, satisfying the arrival time of the clock signal with
minimum interconnect, as described in section IV-B. Based on
the location of the splitters, JTLs, and blockages, the layout
is converted into a Hanan grid [40]. The approximate PTL
layout is determined using a shortest path algorithm, such as
the A-star algorithm [41]. Precise routing of the interconnect
is determined during the fine routing stage, as described in
section IV-C. The delay of the wires is finely adjusted with
wire snaking to satisfy the precise requirement of the clock
arrival times.

A. Coarse Routing

The coarse routing process for a pair of nodes A and B
commences with identifying the cell location for the splitters
and JTLs. The layout regions available for the JTLs and
splitters are provided to QuCTS as a user input. Based on the
cell dimensions and spacing information, these layout regions
are converted into a set of points P describing a potential
position of a cell (see Fig. 5).

The coarse routing procedure is outlined in Algorithm 2.
Delay equilibrium can be achieved with wire snaking or delay
insertion [38], [39]. Large delays with wire snaking however
require prohibitively large area and increase the likelihood
of routing congestion. Delay elements, in contrast, typically
produce large delays, rendering them unsuitable if the delay
difference is small. N cells located close to the line connecting
nodes A and B form a subset of cells PAB ⊂ P suitable for
routing. These gate cells combined with gates A and B form
the node set of proxy graph vertices Vp = {A,B}∪PAB . Each
pair of nodes in Vp except {A,B} is connected with an edge.
The weight of each edge is the Manhattan distance between
the terminals. The edge weights therefore represent the length
of the shortest rectilinear PTL connecting two points within a
layout. For a proxy graph with N + 2 nodes (two gates and
N gate cells), a total of 1

2 (N + 2)(N + 1) edge weights is
determined. The resulting undirected proxy graph is

Gp = (Vp, Ep, w : Ep → R),

Vp = {A,B} ∪ PAB ,
Ep = {{a, b} ∈ V 2

p |a 6= b ∧ {a, b} 6= {A,B}},
w(a, b) = |xa − xb|+ |ya − yb|,

(16)

where xa and ya are, respectively, x and y coordinates of node
a.

Algorithm 2: Given a proxy graph Gp, two nodes A and
B, and set of delays D available at each delay element,
determine the splitter gk and paths qA and qB connecting
a splitter to, respectively, A and B while satisfying the
difference in arrival times between nodes
procedure PROXY_PATH;
Input: Gp, A, B, τA, τB , D
L∗ ←∞;
for each path {A, g1, . . . , gm, B} from A to B do
L = v(wA,1 + · · ·+ wm,B);
for k ∈ {1, 2,m− 1,m} do
qA ← (A, g1, . . . , gk);
qB ← (gk, gk+1, . . . , gm, B);
WA,k = wA,1 + ...+ wk−1,k;
Wk,B = wk,k+1 + ...+ wm,B ;

for each combination {d1, . . . , dk−1} ∈
((

D
k−1
))

do

for each combination {dk+1, . . . , dm} ∈
((

D
m−k

))
do

SA,k ←
∑k−1
i=1 di;

Sk,B ←
∑m
i=k+1 di;

∆t← τA − τB −WA,k +Wk,B − SA,k + Sk,B ;
∆L← v∆t;
Ltotal ← L+ ∆L;
if Ltotal < L∗ then
L∗ ← Ltotal;
q∗A ← qA;
q∗B ← qB ;
d∗A ← {d1, . . . , dk−1};
d∗B ← {dk+1, . . . , dm};

end
end

end
end

end
return q∗A, q∗B , gk, d∗A, d∗B

Four crucial assumptions are made when producing proxy
graph Gp:

1) Each gate is equipped with a passive transmission line
transmitter and receiver [42]. Including the PTL driver
and receiver within each gate reduces the complexity
of the routing process and enables a linear relationship
between the length and delay of an interconnect [42].

2) The placement of splitters and delay elements is lim-
ited to certain areas of the layout. This assumption is
consistent with a typical RSFQ IC layout where the
placement of the cells is limited to narrow regions,
such as the cell rows [43], [44], [45]. Only those nodes
within the dedicated regions have a connection to the
vacant gate cells. Other nodes are not connected to the
device layer, preventing placement of the devices within
prohibited zones. QuCTS can however handle arbitrary
cell placement regions.

3) The size of the splitters and delay elements is assumed
similar [46] and cells do not overlap. These assump-
tions simplify the placement of the splitters and delay
elements, accelerating the clock tree synthesis process.
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e)
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𝒘𝟓𝟔 = 𝟔

𝒕𝑩 = 𝝉𝑩 = 𝟏𝟑

𝒕𝑨 = 𝝉𝑨 = 𝟑𝟐

𝒘𝟓𝑨 = 𝟏𝟏

f)

Fig. 5. Example of delay equilibration between gates A and B. τi is the arrival time of gate i. a) Initial layout. The empty circles represent vacant gate cells.
b) Discovery of gate cells in proximity of the line connecting the two gates. The darker areas are closer to the line and are included in the proxy graph. c)
Proxy graph containing six discovered gate cells and gates A and B. The thickness of the edges represents the closeness of the two nodes within a layout.
d) A candidate proxy path A− g5 − g6 −B is discovered in a proxy graph. e) The candidate proxy path transferred to the layout. wi,j is the delay of the
path between nodes i and j, and di is the delay of the element at cell i. The splitter is therefore placed at node 6. The delay from the splitter to A relative
to τA is smaller than the delay from the splitter to B relative to τB . The arrival time of the splitter is therefore based on the arrival time of B. Additional
delay is required along the path to node A. f) Using wire snaking, additional delay is introduced along the path from the splitter to A. The arrival time is
satisfied for both A and B.

4) The orientation and pin configuration of the cells are
assumed flexible, allowing the splitters and JTL elements
to be arbitrarily oriented to satisfy routing needs.

Note that edge {A,B} is explicitly excluded from the proxy
graph since this proxy path does not include a necessary gate
cell for a splitter. The paths within a proxy graph model the
connections in the layout. In this paper, these paths are referred
to as proxy paths. A shorter path corresponds to a PTL con-
nection with a smaller interconnect length. To determine the
shortest proxy paths, the k-shortest path algorithm, described
in [47], is used. This algorithm finds all loopless paths from
source to target in increasing edge weight. With this algorithm,
the proxy paths requiring the least interconnect resources are
identified.

B. Analysis of Proxy Path Delay

If the proxy path contains more than one gate cell, the split-
ter placement is determined by the delay analysis described in
this subsection. For example, consider path A− g5 − g6 −B

shown in Fig. 5d. Placing a splitter at g5 requires the SFQ
clock pulse to arrive at the splitter at

τSPL|g5 = τA − wA,5 − dSPL, (17)

where dSPL is the splitter delay. The resulting clock arrival
time at node B is

tB = τSPL|g5 + dSPL + w5,6 + d6 + w6,B � τB , (18)

where di is the delay of the element placed at node gi, and wi,j
for brevity is equivalent to w(gi, gj). The resulting arrival time
is significantly later than the required arrival time. Correcting
this discrepancy with wire snaking requires significant area. If
the splitter is instead placed at cell g6, the SFQ clock pulse
arrives at

τSPL|g6 = τA − wA,5 − d5 − w5,6 − dSPL, (19)

yielding a clock arrival time at B,

tB = τSPL|g6 + dSPL + w6,B ≈ τB . (20)
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The discrepancy in arrival time is minimized and can be
corrected with less area overhead using wire snaking.

To generalize this algorithm, consider path A− g1 − · · · −
gm − B with one splitter and m− 1 delay elements. Placing
a splitter at cell gk produces two paths,

qA(gk) = (A, g1, . . . , gk−1, SPL), (21)
qB(gk) = (SPL, gk+1, . . . , gm, B). (22)

The delay of each path is the sum of the splitter delay dSPL,
interconnect delay, and intentional delay,

d(qA(gk)) = WA,k + SA,k + dSPL, (23)
d(qB(gk)) = Wk,B + Sk,B + dSPL, (24)

where

WA,k = wA,1 + ...+ wk−1,k, (25)
Wk,B = wk,k+1 + ...+ wm,B , (26)

SA,k =
∑k−1
i=1 di, (27)

Sk,B =
∑m
i=k+1 di. (28)

Note that d(gk) is replaced with dSPL.
To satisfy the arrival time at gate A, the SFQ clock pulse

is required to arrive at the splitter at time

τSPL|gk = τA −WA,k − SA,k − dSPL. (29)

The resulting arrival time at gate B is

tB = τA −WA,k − SA,k +Wk,B + Sk,B . (30)

If the required arrival time at B is τB , the resulting mismatch
in the clock arrival time is

∆t = τA − τB −WA,k +Wk,B − SA,k + Sk,B . (31)

To minimize this mismatch, the splitter placement and delay
of the delay elements are adjusted to minimize |∆t|. Ideally,
∆t = 0, yielding

τA − τB = WA,k + SA,k −Wk,B − Sk,B . (32)

Practically, however, a tolerance level |∆t| < ε is set by the
user that allows the proxy paths to be reasonably close to the
target arrival time.

The intentional delay can be varied by choosing different de-
lays from the set of possible delays, D = {d1, d2, ..., dn|di <
dj |1 < i < j < n}. The number of delay elements on each
side of the splitter is, respectively, k− 1 and m− k. The total
number of possible splitter locations is m, yielding a total
number of delay combinations,

N =

n∑
k=1

(
k + n− 2

k − 1

)(
m− k + n− 1

m− k

)
. (33)

To reduce the number of iterations, note that the gate with an
earlier arrival time typically does not require a delay element.
By varying the delay of the elements along the paths, the
target arrival time can be achieved. In addition, a splitter is
placed closer to the gate with a later arrival time, creating
an unnecessary delay imbalance, requiring greater area. By
restricting the splitter placement to k ≤ 2, i.e., no more than

Algorithm 3: Given splitter location gk, proxy paths qA
and qB , target arrival times τA and τB , wire pitch h, and
set of obstacles O, embed paths qA and qB within the
layout

procedure HANAN;
Input: qA, qB , gk, τA, τB , h, O
S ← qA ∪ qB ∪ {gk} ∪ BOUNDARIES(O);
H(S)← HANAN_GRID(S);
for each line segment l ∈ H(S) do

if l intersects an obstacle in O then
remove l from H(S);

end
end
try:
segment ⊆ E ← SHORTEST_PATH(GH(S), u, v);
success← False;
while success 6= True do

try:
GH(S) = (V,E)← CONVERT_TO_GRAPH(H(S));
wireA ← ∅;
for each pair of nodes {u, v} ∈ qA do
segment ⊆ E ← SHORTEST_PATH(GH(S), u, v);
E ← E \ segment;
wireA ← wireA ∪ segment;

end
wireB ← ∅;
for each pair of nodes {u, v} ∈ qB do
segment ⊆ E ← SHORTEST_PATH(GH(S), u, v);
E ← E \ segment;
wireB ← wireB ∪ segment;

end
tA ← v length(wireA);
tB ← v length(wireB);
∆t← (τA − τB)− (tA − tB);
O ← O ∪ wireA ∪ wireB ;
success← True;

catch No path between u and v:
S ← DETAILED_HANAN(S, h,O)

end
end
return wireA, wireB , ∆t

two nodes from the node with a later arrival time, the total
number of combinations is reduced to

N =

(
m+ n− 2

m− 1

)
+ n

(
m+ n− 3

m− 2

)
. (34)

For m = 10 and n = 5, (34) yields 3,190 delay element
combinations, as opposed to 48,620 by (33).

Many proxy paths are generated for further processing.
Those proxy paths exhibiting a delay imbalance within a
tolerance level are sorted by the number of delay elements and
total interconnect length. The path tuning algorithm processes
the least expensive paths first, yielding a significant savings in
area.
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Algorithm 4: Given set of points S, wire pitch h, and set
of obstacles O, produce a more complete set of points

procedure DETAILED_HANAN;
Input: S, h, O
S∗ ← ∅ for each point (x0, y0) ∈ S do

for each point s ∈ {(x0 ± h, y0), (x0, y0 ± h)} do
if p does not intersect an obstacle in O then

S∗ ← S∗ ∪ s;
end

end
end
return S ∪ S∗

C. Fine Routing

During the fine routing stage, the proxy path selected in
the previous section is converted into a layout. To determine a
feasible placement for the interconnect, the routing is based on
a Hanan grid, widely used in VLSI routing [48], and illustrated
by Algorithm 3. Hanan grid H(S) is the set of points produced
by drawing horizontal and vertical lines through each point in
S. In QuCTS, the set of points for the Hanan grid consists
of clocked gates, splitters, and JTL delay elements from the
proxy graph, as well as bounds on the blockages, as illustrated
in Fig. 5e. A graph GH(S) is based on points within H(S).
Two nodes in GH(S) are connected if the corresponding points
are adjacent along any of the lines within the Hanan grid
H(S) and no blockage exists between the nodes. The weight
of an edge is related to the propagation delay of the clock
signal along the straight interconnect segment connecting the
terminals of the edge.

During the routing process, previously routed wires may
disconnect graph GH(S), isolating the target cells. To avoid
this situation, the Hanan grid refinement process is applied, as
shown in Algorithm 4. Four additional points, at a distance of
wire pitch h, are added near each point within S, producing
an extended set S∗. A Hanan grid graph GH(S∗) with superior
connectivity is produced and the routing process is repeated.

The delay of the path generated in a Hanan grid graph is
typically different from the estimate based on a proxy path.
To adjust the delay and satisfy the arrival time requirements,
the wire length is increased using wire snaking. A snaking
method – aura snaking – is proposed here (see Algorithm 5)
to increase the wire length, as illustrated in Fig. 6. The set
of points Q within distance d from the interconnect segment
separated by distance s is initially identified (see Fig. 6b). Set
Q is referred to as an aura of the interconnect segment. The
proximity metric of point q ∈ Q to the other gates is defined
as

pq ≡
∑
p∈U

1

|| ~pq||s
, (35)

where U is the set of clock sinks, ~pq is the vector connecting
points p and q, and ||vpq||s is the s-norm of ~pq. A point located
closer to the other gates has a greater proximity metric and
can create congestion. An adjacent pair of aura points with
the smallest proximity metric is therefore chosen for snaking
to minimize the likelihood of congestion. The aura points
are evaluated for intersections with blockages, ensuring the

Algorithm 5: Given interconnect layout wire, set of
obstacles O, and set of gates U , extend the interconnect
to increase the delay by ∆t

procedure AURA_SNAKING;
Input: wire, ∆t
Q← {};
for each segment ∈ wire do

for each point q ∈ segment spaced by d do
if segment is vertical then

q1 ← (xp, yp − d);
q2 ← (xp, yp + d);

else
q1 ← (xp − d, yp);
q2 ← (xp + d, yp);

end
if q1 6∈ O then

Q[segment]← Q[segment] ∪ {q1} ;
p[q1]←

∑
p∈U

1
|| ~pq1||s ;

end
if q2 6∈ O then

Q[segment]← Q[segment] ∪ {q2} ;
p[q2]←

∑
p∈U

1
|| ~pq2||s ;

end
end

end
while ∆t > ε do

d∗ ← −∞;
for each segment ∈ wire do

for each pair of adjacent points
q1, q2 ∈ Q[segment] do
d← p[q1] + p[q2];
if d < d∗ then

d∗, q∗1 , q
∗
2 , segment

∗ ← d, q1, q2, segment;
end

end
end
extend segment∗ with q1 and q2; update wire;
update Q;
∆t← ∆t− 2d

v ;
end
return wireA, wireB , ∆t

feasibility of the wire snaking process. Once the aura points
are selected, the wire segment adjacent to the aura points is
replaced with a snaking segment, as depicted in Fig. 6c. The
interconnect is therefore extended by 2d, increasing the wire
delay by

δt =
2d

v
, (36)

where v is the speed of the RSFQ pulse propagation within a
PTL.

To ensure that the aura points can be generated, spacing s
should be smaller than the length l of the interconnect. The
spacing however cannot be smaller than the wire pitch h due to
manufacturing constraints. In the case studies, as described in
section V, the spacing is equal to the wire pitch. The minimum
length of any interconnect segment is two times greater than
the wire pitch, ensuring that at least three aura points can
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Fig. 6. Single iteration of the aura snaking process. a) Initial wire segment surrounded by vacant cells and blockages. b) Aura points generated within distance
d from the wire. Two points near node A (filled) are selected for snaking. Note that the aura point is not generated within the blockage. c) Final extended
segment.

be generated. A sufficient number of aura points cannot be
generated if the wire is completely surrounded by blockages.
In this case, an alternative proxy path is embedded, avoiding
the congested area.

Once a valid route for a pair of nodes is determined, several
operations are necessary before the next pair can be processed.
The splitter, delay elements, and interconnect are placed within
the layout. The corresponding points in PAB are removed from
set P , preventing the placement of additional gates into these
locations. Interconnect is added to the blockages to ensure
no intersection with any subsequent wires exists. The process
described in this section is repeated for each pair of nodes
within the circuit, thereby determining the position of the N−1
splitters with N clock sinks.

V. CASE STUDY

QuCTS is verified with the Verilog model of the AMD2901
CPU and the corresponding layout. 1,050 clocked gates are
distributed within a 225 mm2 IC. The maximum and mini-
mum delay of each gate is known. The circuit topology is
represented as a Verilog netlist. The PTL driver and receiver
are embedded within each gate and splitter. The dimensions
of each gate is 40 µm × 40 µm. Two layers of interconnect
are dedicated to the clock distribution network. The vertical
interconnects are placed in layer M2, and the horizontal
interconnects are placed in layer M3. The gates are located
in layer M5 and connected to layer M3 with vias. The
interconnect pitch is 20 µm. The propagation speed of the
RSFQ pulse in layers M2 and M3 is 6.25 µm/ps. The vertical
connections between layers are established by the vias and
produce negligible delay.

A clock skew schedule is generated for a 154 ps clock
period in less than one minute. The clock network layout
is generated in 52.5 minutes and is shown in Fig. 7. 2,290
gates, 1,049 splitters and 1,241 delay elements, are added to
the layout. The total wire length is 1,027 mm occupying an
area of 5.134 mm2. 9,862 vias are placed between layers M2
and M3, and 6,676 vias are placed between layers M3 and
M5. The maximum difference between the required and actual
arrival times is 1.6 picoseconds.

Fig. 7. Clock tree layout of AMD2901 synthesized with QuCTS.

The proposed tool has also been applied to a suite of
ISCAS’89 [49] and ITC’99 [50] benchmark circuits with
high gate count. The cell placement for the benchmarks is
generated with Synopsys IC design compiler [51]. The results
are listed in Table I. Note that the number of delay elements
is linearly correlated with the number of clocked gates. For all
six benchmarks, an average of 1.3 delay elements per splitter
is included within the clock tree. This trend is explained by the
clustering method used in QuCTS. Since the clock arrival time
is considered during the routing process, gates with a similar
arrival time are grouped together, producing a small delay
imbalance with fewer delay elements and less wire snaking.
Despite the AMD2901 being composed of fewer gates than
the S13207, the total wirelength is significantly larger. This
trend is explained by the more compact placement of the cells
in the S13207 as compared to the AMD2901.

Since QuCTS is the first SFQ-based clock tree synthesis tool
supporting nonzero skew, a direct comparison is complicated
by the heterogeneity of the benchmark circuits and different
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TABLE I
PERFORMANCE OF QUCTS APPLIED TO AMD2901, ITC99, AND

ISCAS89 BENCHMARK CIRCUITS WITH HIGH GATE COUNT

Circuit Clocked
gates

Delay
elements

Total
wirelength (mm)

Runtime
(minutes)

AMD2901 1,049 1,241 1,027 54
ISCAS89 S13207 1,636 2,405 272 77

ITC99 B14 6,365 5,762 905 227
ISCAS89 S38417 11,796 11,367 1,002 425
ISCAS89 S35932 14,914 15,814 6,656 394

ITC99 B18 45,710 71,090 31,736 2,485

target metrics. In [16], for example, a minimum clock skew
tree is generated that reduces the clock skew below 4.6 ps. The
splitters are initially placed arbitrarily and later embedded into
the routing channels. Since the propagation delay of multiple
JTLs is significantly greater than the delay of a PTL, and the
minimum propagation delay is of interest in zero clock skew
scheduling, no JTLs are used in [16]. The number of cells is,
on average, doubled after clock tree synthesis, consistent with
these case studies. No information on the algorithm runtime
is provided [16]. The interconnect routing process is however
transformed into two mixed integer programming problems,
each completed in under 30 minutes. A timing uncertainty
aware clock tree is proposed in [52], where robustness to pro-
cess variations is improved by maximizing the delay available
for the setup and hold times. This process is analogous to clock
skew scheduling where the target skew is placed at the center
of the permissible range [20]. The resulting total wirelength
is 0.428 mm per clocked gate, consistent with the 0.419 mm
per clocked gate exhibited by QuCTS.

The primary bottleneck of the algorithm in these case stud-
ies is the Hanan grid based interconnect placement, requiring,
on average, 78% of the total runtime, followed by proxy
graph analysis (15%) and clock skew scheduling with 6%.
Determining the clock tree topology requires negligible time
in these case studies. Finding the intersection between the
geometric objects is the most expensive operation, requiring
more than two thirds of the time for path embedding. Based
on these case studies, the path embedding process grows
linearly with the number of clocked gates. This trend can
be explained by Hanan grid interconnect placement which
only depends on the number of gates, cells, and blockages in
proximity of the target gates. Other parts of QuCTS, however,
scale superlinearly. The primary bottleneck of clock skew
scheduling is the optimization process. The typical complexity
of the optimization algorithms ranges from O(n2) to O(n3)
[53]. Although the clock skew scheduling process is not a
bottleneck in these case studies, clock skew scheduling may
dominate the runtime if the number of gates increases to
hundreds of thousands to millions of gates. The current RSFQ
technology, however, only supports several tens of thousands
of junctions, making QuCTS applicable to modern RSFQ
circuits and systems.

VI. CONCLUSIONS

Advances in RSFQ electronics over the past decades have
enabled the development of sophisticated superconductive
systems. Design methodologies and related algorithms and

techniques targeting the large scale integration of RSFQ cir-
cuits are essential for managing the increasing complexity
of these systems. Elevating the performance of large scale
superconductive systems requires a significant advancement in
existing design capabilities, particularly the synchronous clock
distribution network.

QuCTS — single flux Quantum Clock Tree Synthesis —
is described in this paper. This tool is the first clock tree
synthesis capability for RSFQ circuits that also utilizes useful
clock skew. Using quadratic programming, the clock skew
schedule is optimized for robustness to parameter variations
and converted into a schedule of clock arrival times. A binary
clock tree is generated by recursive clustering of the clock
sinks based on the physical location and, optionally, the clock
arrival times. Splitters and delay elements are placed within
the layout, and the paths are tuned to satisfy the schedule of
arrival times. The tool is validated using the AMD2901 four
bit microprocessor as well as ITC99 and ISCAS89 benchmark
circuits. By exploring different topologies, QuCTS minimizes
the number of delay elements and interconnect length. The
clock arrival time schedule is precisely satisfied with wire
snaking.
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