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Abstract—Unlike the routing of on-chip power delivery net-
works which is a highly automated process, the routing of
board-level power nets is usually performed manually. The
process is complicated by geometric and electrical constraints
that impose restrictions on the routing process. An automated
board-level power routing algorithm is presented here which
provides efficient generation and refinement of power network
geometries at the layout level. In a case study, a routing path
connecting a power management integrated circuit to a ball
grid array is routed using the automated tool, producing a low
impedance network while complying with metal resource and
geometric constraints.

I. INTRODUCTION

The demand for high performance in modern integrated

circuits requires reliable power delivery. Careful consideration

of a variety of factors, such as voltage drops, temperature, and

electromigration, is needed. Violations in power integrity may

result in device malfunction or not satisfying target design

specifications.

Whereas signal routing in integrated circuits (IC) is well

developed and heavily automated, the design of the power

delivery network at the board level is typically performed

manually. A conventional design flow for a board-level power

delivery network is shown in Fig. 1 [1]. The power deliv-

ery network of the package and board has historically been

manually routed during or after cell placement and signal

routing. During the physical design process, the controlled

collapse chip connection (C4) bumps are assigned, which

drives the placement of the ball grid array (BGA) pins of

the package and printed circuit board (PCB). The design rules

are concurrently set depending upon the system requirements.

Any flaws in the electrical and thermal performance as well

as manufacturability are identified during a later verification

stage, and the system is iteratively modified to achieve the

target requirements.

The power delivery design automation process has been

previously discussed at various levels of abstraction [2], [3].

Most of the effort has concentrated on circuit-level analysis,

specifically, power integrity [4], [5], [1], thermal performance

[6], [7], and long term reliability [8], [9]. While highly

regular grid structures are typically utilized in high perfor-

mance integrated circuits [2], due to reliability and redundancy
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Fig. 1. Conventional design flow for power delivery networks [1].

considerations, the layout of the power delivery network at

the board and package level is typically manually designed,

connecting the output of the power management IC (PMIC)

with the appropriate BGA balls, C4 bumps, and decoupling

capacitors. Manual layout of the power delivery network

requires significant resources in both labor and time [1]. This

issue is further exacerbated by the iterative nature of the design

process, demanding additional resources for modifying the

power network, increasing the time to market.

Despite the relevance of the problem, automated genera-

tion of power delivery networks at the board level is rarely

discussed in the literature. To the best of the authors’ knowl-

edge, synthesis of board-level power networks has not been

discussed in the literature. In this paper, a novel graph-based

automated layout generation methodology and related tool

are presented. The automated tool produces one rail of a

power delivery network in approximately four minutes. The

tool, implemented in Python 3, minimizes the resistance and

inductance of the resulting shapes while satisfying physical

and electrical design rules, such as spacing and current density.

The proposed algorithm provides a significant reduction in

labor while greatly enhancing the efficiency of the design

process of board-level power networks.

The rest of the paper is organized as follows. The power

routing problem is discussed in section II. The proposed

power routing algorithm is described in section III. The
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automated power routing tool based on the proposed algorithm

is demonstrated in section IV, followed by the summary and

conclusions in section V.

II. PROBLEM STATEMENT

A typical layout of a PCB consists of several metal layers

of different shape placed above each other. The metal layers

are separated by a layer of dielectric and vias which connect

to adjacent metal layers. Two sets of points, S and T , are

identified, respectively, as the source and target locations. The

objective of the routing algorithm is to produce a set of metal

shapes and vias that minimizes the effective resistance and

inductance between the source and target locations. Geometric,

electrical, and design constraints also need to be considered

during the routing process. Each metal layer may encounter

different blockages, such as higher priority nets (e.g., signal

nets, high performance processors), reserved whitespace, and

ICs (on the top and bottom layers). Collectively, these block-

ages constitute geometric constraints. The metal segments and

vias should be placed only in the remaining available space,

referred to here as the routing space.

Many algorithms for interconnect routing in integrated cir-

cuits exist that are suitable for routing power nets [10], [11],

[12], [13], [14]. Most of these algorithms employ a graph to

yield the desired connections. Significant differences, however,

exist between power and signal routing, as listed in Table I.

The primary difference is the scale. Whereas the number of

signal nets may often exceed thousands, the number of power

nets is usually between 5 and 20, depending upon the system

function, power consumption, cost, and form factor. The fun-

damental requirements for each net are, however, drastically

different. Unlike signal nets, where the impedance character-

istics are of lower priority, the electrical characteristics are

pivotal to the power routing process, as the impedance directly

affects the susceptance of the power network to resistive and

inductive noise [3]. The design constraints in both problems

are also different. While signal integrity issues are considered

in signal routing, such as impedance matching, crosstalk,

attenuation, inter-symbol interference, mode conversion, and

timing, in power routing, the impedance, current density, and

thermal behavior are of paramount importance.

III. OVERVIEW OF ROUTING ALGORITHM

The process of power routing is depicted in Fig. 2 and de-

scribed in this section. A method for determining the available

space and conversion into a graph is described in subsection

III-A. In the following sections, the subgraph construction

procedure is described including an initial skeletal subgraph in

subsection III-B, growth stage in subsection III-C, followed by

a refinement stage in subsection III-D, and optional reheating

stage in subsection III-E. The process is completed with

back conversion of the graph into a layout, as described in

subsection III-F.

A. Available routing space

The process of power routing commences with three impor-

tant inputs. The net information describes which nets need to

be routed. The layout template contains information describing

the existing objects within the layout, including the signal

traces, fucntional blocks, decoupling capacitors, inductors, and

BGA balls. The design rules specify geometric constraints,

such as the minimum space between objects.

The routing space for a given rail is initially the entire

space of the PCB. Layout template objects foreign to the

routed net are marked as blockages (see Fig. 2b). Areas within

the proximity of these objects are removed from the routing

space according to the design rules, characterizing a safe

routing space for a given rail. The resulting space is a set of

polygons A. Once the available space is determined, the space

is divided into small individual cells. Each cell a is converted

into a node of an equivalent graph Γ , and the adjacent cells

are connected to the edges. To support back conversion into

polygons, mapping between the node in graph Γ and the cell

location and shape is recorded as

f : Γ → A, (1)

f−1 : A → Γ, (2)

where f is the map converting a node within the graph Γ into

a polygonal cell, and f−1 is the inverse of f . The weight of

each edge corresponds to the conductance between the corre-

sponding cells. The cells in the equivalent graph disjoint from

the source and target nodes are removed from the graph and

not used in subsequent stages. Once the equivalent graph of

the available space is constructed, the routing process becomes

a graph-based optimization problem. For back conversion of

the resulting subgraph into polygons, each node within the

equivalent graph is associated with an underlying cell. Note

that whereas most cells are a regular rectangular shape, cells

adjacent to the blockages are often irregular in shape to avoid

routing within prohibited areas.

With the construction of the equivalent graph, the routing

objective is to find the subgraph ΓS within the available space

graph Γ that minimizes the resistance and loop inductance

between the source and target nodes. Several optimization

strategies exist that are applicable for this task [15]. A three

stage graph-based procedure is proposed here. First, a skeletal

route is created to provide an initial seed. Next, the subgraph

growth stage is commenced where the area of the shape

is increased until the target area is reached. Finally, the

constructed shape is enhanced in the subgraph refinement

stage, where the peripheral nodes are replaced with alternative

nodes, improving the electrical characteristics of the routed

shapes.

Two factors primarily affect the computational time of the

routing process. First, the size of the subgraph ΓS is set

by the granularity of the routing process. Fine granularity

of the subgraph will likely result in lower impedance while

increasing the time required for nodal analysis during the

subgraph refinement process. Efficient sparse matrix solving

algorithms are therefore utilized to accelerate this process.

The number of refinement iterations is another parameter
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TABLE I
COMPARISON BETWEEN SIGNAL AND POWER ROUTING

Feature Signal Routing Core Power Routing

Goal
Establish connection between
signal source and destination locations

Establish connection between
voltage source and ground locations

Resulting shape Rectilinear metal tracks Arbitrary shaped metal segment

Typical number of nets More than 50 Less than 10

Constraints Crosstalk noise, timing Current density, temperature, metal resources

increasing the routing time. Additional iterations will likely

lower the impedance at the cost of greater runtime.

B. Skeletal subgraph

The routing process requires an initial seed to be iteratively

improved in later stages of the algorithm. The seed is generated

in two steps. First, since there are no edges with negative

conductance, the shortest path is guaranteed using the Dijkstra

shortest path algorithm [16]. This skeletal subgraph, however,

leaves any available space underutilized. Consider the situation

shown in Fig. 2c. The shortest path skeletal subgraph is marked

with a double line. If only the shortest path algorithm is used

for the initial graph, the obstacle is bypassed from only one

side, whereas a potentially better subgraph can be generated

using a different skeleton.

To avoid this situation, the skeleton is reinforced using the

biased random walk approach [17]. The initial node is set at

the source node. The probability of transitioning toward the

neighboring node depends upon the distance of these nodes

from the target location,

P (x) =
d(x)∑

i∈N(x0)
d(i)

, (3)

where P (x) is the probability of transitioning to node x from

node x0, d(x) is the Euclidean distance from node x to the

target node, and N(x0) is the set of nodes adjacent to x0. The

set of nodes traveled by the random walk is used to construct

the skeletal subgraph, which is appended to the shortest path

graph (see Fig. 2c).

C. Growth stage

The resulting skeletal subgraph typically contains the fewest

nodes, easily satisfying the area constraint. A procedure for

adding nodes from the available space graph Γ to the re-

sulting subgraph ΓS is therefore effective. This problem is

similar to the region growing problem [18], where the set

of pixels within an image is grown into a cluster to identify

specific patterns. The subgraph growing algorithm presented

here, however, is drastically different due to the focus on

improving the impedance characteristics of the graph. The

set of peripheral nodes PΓ is initially identified within the

subgraph ΓS . Neighbors of the nodes in PΓ in the available

space not belonging to the subgraph form the candidate node

set CΓ . The importance of the candidate node in CΓ requires a

robust heuristic to guide the creation of the conducting shape.

A metric based on the current capacity of the adjacent nodes

is proposed here.

Using the Laplacian matrix, the node voltages within the

subgraph and the effective resistance between the source and

target node are found using the following matrix equations,

Reff = esv, (4)

Lv = es, (5)

where s is the index of the source node, es is the vector equal

to 1 at s and zero otherwise, and L and v, are, respectively,

the grounded Laplacian matrix and vector of node voltages.

The current capacity of each peripheral node is

ix =
∑

k∈N(x)∧k∈ΓS

|vx − vk|. (6)

The resulting weight wx of node x in CΓ is

wx =
∑

k∈N(x)∧k∈ΓS

ix. (7)

The candidate nodes are sorted and the nodes with the highest

weights are appended onto the subgraph. The process is

repeated until the target area of the shape is achieved.

D. Refinement stage

The subgraph resulting from the iterative growth process is

typically suboptimal and may benefit from moving the nodes

from areas with less current into areas where the current is

more congested. The procedure is performed in four steps.

First, the peripheral nodes conducting the smallest and largest

currents are identified using (6) and (7) to form sets C and L,

L = {wl < wTL, l ∈ N(Γ ), l ∈ ΓS , Γ /∈ ΓS}, (8)

C = {wc > wTH , c ∈ N(a), a ∈ ΓS , c ∈ Γ, c /∈ ΓS}, (9)

where wTL and wTH are, respectively, the lower and higher

threshold weights. The set L is composed of the nodes in

ΓS conducting relatively small currents. The set C consists of

nodes not belonging to the subgraph ΓS , but adjacent to the

nodes in ΓS conducting large currents.

Next, the node from L with the lowest weight is removed

from the subgraph ΓS . After this step, the subgraph is checked

for connections, since the removal of a node may create

isolated islands. If a disconnect occurs due to the removal

of a node, this node is eliminated from L and the process

is repeated until a suitable node is found. Finally, the node

with the largest weight in C is attached to the subgraph.

This procedure is iteratively repeated, leading to a gradual

improvement in the impedance characteristics of the subgraph.
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Fig. 2. Graph-based routing procedure. a) Initial topology. The signal via pads are depicted as gray circles, and the signal traces are shown as black lines. The
existing power net is shaded from top-left to bottom-right. b) Generating the equivalent graph. The gray areas around the blocks, traces, and pads represent
the necessary space to be maintained from the existing shapes. The red dots represent the graph vertices. For figure clarity, the edges connecting the adjacent
vertices are not shown. c) Skeletal subgraph. The double line is the skeleton generated by the shortest path algorithm. The arrows represent the random walk
used for an alternative skeletal graph. d) The square nodes represent the equivalent near-optimal subgraph. e) Final routed metal segment. f) Shape generated
by the automated power routing algorithm.

To complete the refinement stage, an efficient termination

strategy is required. A typical strategy in optimization al-

gorithms, monitoring any change in the objective function,

is suitable for this task. When the subgraph converges to a

locally optimal state, any improvement in the impedance with

each iteration reduces or becomes negative, i.e., the iteration

produces a higher impedance. The refinement process may

therefore be terminated if the change in the effective resistance

is below a certain threshold.

E. Subgraph reheating

A common concern in global optimization is convergence

of the algorithm into a local minimum [1]. To minimize the

likelihood of this situation, the subgraph reheating procedure,

adapted from simulated annealing [19], is proposed here. After

termination of the iterative process, the nodes in Γ adjacent

to the periphery of ΓS are attached to the shape. This process

is similar to the dilation operation in image processing [20],

where a target image is expanded by adding neighboring

pixels.

To restore the initial area of the subgraph, the process of

peripheral node removal is performed, similar to the process

described in subsection III-D. The importance of the peripheral

nodes of the resulting dilated subgraph are evaluated using (6)

and (7), and those nodes with the lowest weight are removed

from the dilated subgraph. This process is iteratively repeated

until the original target area of the shape is achieved.

F. Back conversion into polygons

Once the final topology of the subgraph is determined,

mapping f , which is created during conversion of the available

space A into the equivalent graph Γ , converts the subgraph

ΓS into the shape AS . The aggregate of the subgraph cells

is merged into the routed conducting shape, establishing the

connection between the source, the PMIC, the target, and the

BGA balls (see Fig. 2e). Practically, this stage is accomplished

by utilizing modern open source geometry packages, such as

Shapely [21] or Computational Geometry Algorithms Library

[22].

IV. CASE STUDY

To illustrate the power routing procedure, a demonstration

PCB is designed in Ansys SIwave [23]. The topology of the

PCB is based on Fig. 2a. The tool is implemented in Python

3 [24], and NetworkX [25] and Shapely [21] packages are

used to manipulate, respectively, the graphs and polygons. A

software interface has been developed to convert a NetworkX

graph into a layout.

The dimensions of the routing space in the PCB are

1, 302 × 732 units. The layout consists of three functional

blocks, eleven signal BGA balls and corresponding traces,

and one predefined power supply rail. The objective is to

route the conducting shape between the output of the power

management IC and the four BGA balls.

The target area of the resulting structure is 125, 000 units2,

and the graph cell size is 10 units × 10 units. For simplicity,

electromigration and thermal constraints have not been con-

sidered in this case study. The algorithm successfully routes

the shape from the PMIC to the BGA in 232 seconds, and the

resulting shape is depicted in Fig. 2f. Note that the resulting

shape is primarily composed of squares. The choice of this

topology is to generate this shape from a large number of

square cells, leading to a large number of right corners within

the resulting polygon.
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V. CONCLUSIONS

Power routing a PCB is a complicated process, drastically

different from signal routing. The differences include greater

flexibility in generating the shape and more priority on the

impedance characteristics of the routed shape. A graph-based

board-level power routing algorithm is presented in this paper

where the routed shape is created in four steps. The routing

space is initially determined by removing any blockages from

the available area. The routing space is next converted into

an equivalent graph. Third, subgraph growth and refinement

are performed by generating a subgraph satisfying the area

constraints, while improving the impedance characteristics.

The subgraph reheating procedure may enhance the routing

solution by minimizing the risk of converging into a local

minimum. Finally, the resulting subgraph is converted into

polygons for the physical layout. This procedure provides fast

layout generation of power delivery networks, greatly reducing

labor and time resources.
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