
Towards Multiphase Clocking in Single-Flux Quantum Systems
Rassul Bairamkulov and Giovanni De Micheli

Integrated Systems Laboratory, EPFL
Lausanne, Switzerland

rassul.bairamkulov@epfl.ch, giovanni.demicheli@epfl.ch

Abstract—Rapid single-flux quantum (RSFQ) is one of the
most advanced superconductive electronics technologies. SFQ
systems operate at tens of gigahertz with up to three orders of
magnitude smaller power as compared to CMOS. In conventional
SFQ systems, most gates require clock signal. Each gate should
have the fanins with equal logic depth, necessitating insertion of
path-balancing (PB) DFFs, incurring prohibitive area penalty.

Multiphase clocking is the effective method for reducing the
path-balancing overhead at the cost of reduced throughput.
However, existing tools are not directly applicable for technology
mapping of multiphase systems. To overcome this limitation, in
this work, we propose a technology mapping tool for multiphase
systems. Our contribution is threefold. First, we formulate a phase
assignment as a Constraint Programming with Satisfiability (CP-
SAT) problem, to determine the phase of each element within the
network. Second, we formulate the path balancing problem as a
CP-SAT to optimize the number of DFFs within an asynchronous
datapath. Finally, we integrate these methods into a technology
mapping flow to convert a logic network into a multiphase SFQ
circuit. In our case studies, by using seven phases, the size of
the circuit (expressed as the number of Josephson junctions) is
reduced, on average, by 59.94 % as compared to the dual (fast-
slow) clocking method, while outperforming the state-of-the-art
single-phase SFQ mapping tools.

I. INTRODUCTION

Superconductive electronics is one of the most promising
beyond-CMOS technologies, with Rapid Single-Flux Quantum
(RSFQ) [1] as the most prominent superconductive technology.
RSFQ systems consistently achieve operating frequencies on
the order of tens of gigahertz [2], [3], with particular structures
accelerating to hundreds of gigahertz [4], [5]. Furthermore,
the operating power of the RSFQ systems is two to three
orders of magnitude smaller than CMOS, even considering the
refrigeration power [6]. Due to the low power, low noise, and
high speed RSFQ systems are utilized in high-resolution sensors
[7] and high-performance wireless communication systems [8].
In addition, these advantages make the RSFQ a promising
candidate for large-scale stationary computing systems (e.g.,
data centers) [6], as well as low-power computing in space [9].

This work was supported by the SNF grant “Supercool: Design methods
and tools for superconducting electronics” under Grant 200021-1920981.

The authors thank Professor Peter Beerel from the University of Southern
California for the insightful discussions.

Elevating complexity of RSFQ systems is however a chal-
lenging task. Due to the major differences between RSFQ
and CMOS technologies, standard design methodologies and
tools are not applicable to RSFQ. In CMOS, transistors encode
information by voltage levels. In contrast, in RSFQ, Josephson
Junctions (JJ) encode information using single flux quantum
(SFQ) pulses [10]. 1 The absence or presence of a SFQ pulse
encode, respectively, a logic 0 or 1. The flow of pulses within a
logic network requires synchronization. While a few structures,
such as splitter and OR, can operate asynchronously, most logic
gates in the original RSFQ cell library, such as AND, NOT and
XOR, require clock signal [1]. This feature requires the data to
be pipelined at the gate level.

Two features further complicate scaling the RSFQ systems.
Due to the quantized nature of SFQ pulses, most RSFQ
logic gates are limited to fanout of one. A special gate
called splitter is necessary to duplicate a signal [9], [10], as
illustrated in Fig. 1b. In addition, path balancing is required
to ensure the correct order of data propagation within the
network, as indicated by four path balancing D-flip-flops
(DFF) in Fig. 1b. The number of path balancing DFFs and
splitters can be prohibitively large, degrading the area and yield.
The complexity of the clock tree synthesis is also increased
due to the large number of clocked elements. Despite the
advances in technology mapping [11], [12], the overhead of
path balancing and clock distribution remains large, motivating
the investigation of alternative RSFQ architectures.

Alternative clocking methods have been explored in the
literature to alleviate the issue of path balancing. In dual clock
methodology [13], a logic circuit is partitioned into separate
clocking domains. The gates within a single domain are clocked
at high frequency fhi, while cross-domain communication is
performed via the nondestructive readout (NDRO) registers
operating at the low frequency flo = fhi/N . In [13], the
number of path balancing DFFs is reduced by 35% with
N = 5 [13]. The throughput of the system is however reduced
by a factor of 5, establishing a tradeoff between the area and
the throughtput of the system. The primary limitation of the
dual clock method is the use of the large registers to repeat the
data signals and additional AND gates to suppress the spurious

1For an in-depth discussion of the SFQ technology we refer an interested
reader to [9], [10].

b

c

d

f

a

a)

b

c

d

f

a

s

b)

3

1

b

c

d

f0

a

1

2

s0

0

0

0

c)
Fig. 1. a) An example of a CMOS circuit. b) Equivalent SFQ circuit with a splitter and two path balancing DFFs. c) A four-phase SFQ realization with no
path balancing DFFs. The numbers indicate the phase corresponding to each clocked gate.



pulses within the system [14]. In addition, similar to full path
balancing, distributing the high frequency clock signal makes
the timing closure more challenging to achieve.

Multiphase clocking has recently been proposed for design-
ing area-efficient SFQ systems [15]. Using several phase-shifted
clock signals allows data to propagate to the subsequent stages
without DFFs. For example, by using four-phase clocking, the
path balancing DFFs can be completely removed, as shown in
Fig. 1c. Using multiple phases was demonstrated effective in
reducing the SFQ circuit area, thanks to the reduction in DFF
count (i.e., smaller logic network) and fewer clocked elements
yielding smaller clock network size. With only two phases,
the number of DFFs and area are reduced by, respectively,
55% and 41% [15], despite the overhead of generating and
distributing separate clock signals. Additional phases further
reduce the system area. Furthermore, in an n-phase system, the
clock signals have n times lower frequency, simplifying the
clock distribution process. Similar to dual clock method, the
area reduction is achieved by sacrificing the throughput. An
n-phase system has n times smaller throughput as compared
to a single phase system.

Although the multiphase clocking has been shown to reduce
the path balancing overhead, existing technology mapping tools
offer limited support for the multiphase systems. For example,
path balancing DFFs cannot be efficiently distributed within the
complex datapaths utilizing asynchronous SFQ gates. To bridge
this gap, in this paper, we propose a novel methodology to
apply the multiphase clocking to SFQ circuits. Our contribution
is threefold,
1) we extend the DFF insertion methodology to assign the

phase to each gate within the circuit, including unclocked
elements.

2) we formulate PB DFF insertion as a Constraint Program-
ming with SAT (CP-SAT) problem to satisfy the timing
constraints with minimum number of PB DFFs. We improve
the scalability by identifying independent paths allowing
the asynchronous paths to be processed separately.

3) we integrate phase assignment and DFF insertion into
the technology mapping flow to realize an arbitrary logic
network with multiple clock phases.

With only two phases, our flow outperforms the state-of-the-
art single-phase methods. Compared with the dual clocking
method, our technology mapping flow achieves up to 82%
smaller size, while offering equal throughput.

The rest of the paper is organized as follows. The principles
of SFQ technology and multiphase clocking are reviewed in
Section II. The CP-SAT-based method for phase assignment
is presented in Section III. PB DFF insertion are described in
Section IV. Experimental results and comparison with the prior
works are provided in Section V, followed by conclusions in
Section VI.

II. BACKGROUND

A logic network N = (V, E) is a directed acyclic graph
(DAG) where V is a set of nodes and E ⊆ V × V is a set
of edges. The set of nodes V = I ∪ O ∪ G consists of three
disjoint subsets representing, respectively, the primary inputs
(PI), primary outputs (PO) and gates within the network. A

set of fanins FI(g) (fanouts FO(g)) of gate g ∈ V denotes
the nodes connected to g via and incoming (outgoing) edge.

Technology mapping refers to the process of transforming
an arbitrary logic network N into a technology-specific
representation N ′ using a particular set of primitives. The
technology mapping aims to optimize the target characteristics
of the mapped network N ′, such as area, delay, or yield
The nature of a technology greatly influences the technology
mapping process. In the next subsection, the properties of the
SFQ technology are reviewed.

A. Single-Flux Quantum technology
Rapid Single-flux Quantum (RSFQ) is a cryogenic supercon-

ductive computing logic family based on Josephson junctions
(JJ). RSFQ gates consist of superconductive loops storing
quantized magnetic flux. The information is transferred between
the superconductive loops in form of SFQ pulses with the area
of Φ0 = ℏ/2e ≈ 2.07 mV·ps [9]. Based on synchronization
mechanisms, the SFQ logic gates can be divided into three
major categories [16].
• Asynchronous input, Asynchronous output (AA) compo-

nents process the input information immediately upon arrival.
The most common gates in this category are splitter and
merger. A splitter produces two pulses for each incoming
pulse. A merger directs signals from two input branches into
one output branch, effectively performing an OR function.

• Asynchronous input, Synchronous output (AS) elements
process the input information immediately upon arrival and
release the output synchronously after the arrival of the clock
signal. The components of this type include D-flip-flop (DFF),
inverter (NOT) and exclusive-or (XOR).

• Synchronous input, Asynchronous output (SA) elements
require the input signals to arrive simultaneously to operate
correctly. The result of the computation is released immedi-
ately after processing. Assuming inputs arrive simultaneously,
a CB can be tuned to produce at most a single output
pulse, producing an OR element [17]. Furthermore, by
adjusting the JJ size and bias current, the OR structure can
be transformed into AND element, requiring both signals to
arrive simultaneously to produce an output pulse.

In conventional RSFQ [1], the OR and AND gates incorporate
the DFFs at the inputs to ensure the simultaneous release of
the data pulses. However, the simultaneity can be achieved
by other AS gates, such as NOT and XOR [16], allowing richer
functionality to be realized in fewer clock cycles.

To correctly consider the type of each element, we
divide the set of logic gates into three disjoint subsets
G = GAA ∪ GAS ∪ GSA, where each subset represents the ele-
ments of the corresponding category. Note that only gates in
the subset GAS require clock signal.

B. Multiphase clocking
Multiphase clocking (MPC) is a clocking technique based

on several clock signals with equal clock period. The seminal
work by Li et al. [15] demonstrated MPC as an effective
remedy for path balancing in SFQ systems. A n-phase system
utilizes n periodic signals {t0, · · · , tn−1} operating at the same
frequency and different phases. Each clocked element g ∈ GAS

within the network is synchronized by only one clock signal
at phase φ(g). The epoch S(g) of a gate g is defined as the



number of clock cycles separating the gate g from the PIs, as
illustrated in Fig. 2. The clock signals are ordered by phase
φ ∈ {0, · · · , n− 1}, i.e., during any epoch, the clock signal ti
arrives before clock signal tj if i < j. For consistency in I/O
timing, the PIs are placed at the same epoch 0 and the POs
are placed at the same epoch. For example, the POs are Fig. 2,
the fanouts x and y are both placed at epoch 2. Observe that a
path balancing DFF is inserted before x to equalize the epochs
of both POs. For convenience, we define a stage σ(g) of a
gate g as

σ(g) = nS(g) + φ(g). (1)
Multiphase clocking relaxes the path balancing requirements

of a clocked system. With n phases, the stage difference
∆σ(i, j) between any pair of sequentially adjacent elements
(i, j) should be no greater than n. Compared with single-phase
systems where a q-stage difference is balanced by q DFFs, the
same difference within an n-phase system can be balanced with
only

⌊
q
n

⌋
DFFs, greatly reducing the path balancing overhead

in imbalanced paths.
To realize the potential of multiphase clocking in SFQ

systems, we propose the two-step DFF insertion methodology
based on CP-SAT. During the phase assignment step, the SFQ
gates are assigned a phase to reduce the number of DFFs
within the system, as described in Section III. During the DFF
insertion step, optimal DFF insertion is determined for each
datapath, as described in Section IV.

III. PHASE ASSIGNMENT

The phase assignment is the procedure of determining the
stage (i.e., epoch and phase) of each gate within the network.
An ILP-based methodology for phase assignment to reduce the
number of path balancing DFFs is proposed in [15],

min
σ(g) ∀g∈G

∑
(i,j)∈E

⌊
σ(j)− σ(i)

n

⌋
, (2)

Subject to:

σ(i) < σ(j) ∀(i, j) ∈ E , (3)⌊
σ(i)

n

⌋
= 0 ∀i ∈ I, (4)⌊

σ(i)

n

⌋
=

⌊
σ(j)

n

⌋
∀i, j ∈ O. (5)

This formulation is highly effective when considering the
systems consisting of only clocked gates, i.e. G = GAS,
GAA = GSA = ∅ This formulation however offers limited

1
2
5

0
2
4

0
0
0

1
0
1

0
1
2

1
1
3

φ
S
σ

b

c

d

a
m s

x

y

Fig. 2. An example two-phase network. Each PI is placed at stage 0 or 1, at
epoch 0. The POs are placed at stages 4 and 5, corresponding to epoch 2.

support for the unclocked gates, such as mergers and SA
AND gate. Unclocked elements can greatly improve the quality
of SFQ technology mapping by enriching the functionality
available within a single clock cycle. In [18], for example,
the area of the circuit was reduced by up to 54% by utilizing
asynchronous elements. However, the unclocked gates impose
timing constraints different from the clocked gates. To extend
the support of this ILP model to unclocked gates, additional
constraints are introduced in this section.

While the notions of phase, epoch, and stage are primarily
relevant for the clocked gates, it is however important to also
assign a stage to the AA and SA elements, since a stage of
an unclocked element guides the DFF insertion. Consider two
networks containing an asynchronous datapath illustrated in
Fig. 3. Both networks realize the same function, however,
the possible locations of path balancing DFFs are different.
Assigning a stage to an unclocked gate is important to correctly
place the path balancing DFFs.

A. SA element constraints
Recall that the inputs of the SA gates require simultaneous

arrival of data pulses to the gate. To ensure the simultaneous
arrival, the AS gate should be placed immediately before the SA
gate, at the same clock stage, as shown in Fig. 4a. If the stage
of AS gate is earlier than the SA gate, a path balancing DFF
should be inserted. In addition, the SA gate cannot be placed at
the same stage as the fanin, if the fanin is not an AS gate. For
example, if the fanin of the SA gate has fanout greater than
one, a splitter is inserted after the AS gate. Thus, the fanin type
of the SA gate is a splitter (AA gate). The propagation delay
incurred by the AA gates, such as splitters, may desynchronize
the inputs arriving to the SA gate [18], producing a data hazard,
as illustrated in Fig. 4b. To avoid this condition, the minimum
stage of gate g is increased by one, as shown in Fig. 4c.

B. Asynchronous paths
The sharing of DFFs by a complex unclocked path has been

highlighed as early as 1991 in [19], where sharing of DFFs is
maximized to minimize the circuit area. While estimating the
minimum number of DFFs in special cases, such as splitter
tree, is relatively simple, more complex asynchronous paths,
however, require more sophisticated processing and, hence,
prohibitive runtime. During the phase assignment stage we

SA

M

S AS

SAS AS

AS

SA

M

S AS

SAS AS

AS

543210

a

b

σ

Fig. 3. The effect of phase assigned to splitters and mergers. Datapaths (a)
and (b) execute the same function. The phases assigned to the splitters and
mergers (denoted as S and M, respectively) are however different. The potential
DFF locations (depicted as yellow rectangles) are therefore different in the
two datapaths.



σ = 0

SA

a)

σ = 0

s
SA

b)

σ = 1σ = 0

s
SA

c)
Fig. 4. Timing constraints of an SA gate. a) The gate should be preceded by
an AS gate at the same stage. b) Example of an invalid assignment. The AS
gate is preceded by an AA gate at the same stage. c) The issue is resolved by
shifting the SA gate to the next stage and inserting two path balancing DFFs.

therefore approximate the number of DFFs as

C (σ (g)) =

 max
a∈FO(g)

(σ (a))− σ (g)

n

 . (6)

The exact number of DFFs is determined during the DFF inser-
tion stage described in Section IV. The combined optimization
problem is formulated as

min
σ(g) ∀g∈G

∑
(i,j)∈E

⌊
σ (j)− σ (i) + (j ∈ GSA)

n

⌋
, (7)

Subject to:

σ (i) < σ (j) ∀ (i, j) ∈ E , j ∈ GAS, (8)

σ (i) ≤ σ (j) ∀ (i, j) ∈ E , j /∈ GAS, (9)

σ (g) ≥ σ (a) + (a /∈ GAS) ∀g ∈ GSA, a ∈ FI (g) , (10)⌊
σ (i)

n

⌋
= 0 ∀i ∈ I, (11)⌊

σ (i)

n

⌋
=

⌊
σ (j)

n

⌋
∀i, j ∈ O. (12)

Each gate g with #FO(g) > 1 requires a splitter tree
to copy the signal to each of the fanouts. After completing
the phase assignment, a splitter tree that maximizes shar-
ing of path balancing DFFs can be produced. First, the
fanouts FO(g) of a gate g are sorted by phase in the
ascending order, producing a sequence A = [a0, a1, · · · , ak],
σ(ai) ≤ σ(aj) ⇐⇒ i < j. Next, the splitters [s0, ..., sk−1]
are inserted at phases a0, · · · , ak−1. Each splitter si has a
splitter si−1 as a fanin, except s0 whose fanin is the gate g.
Each splitter si has the ai and si+1 as a fanout, except sk−1

whose fanouts are ak−1 and ak. Using this method, the splitters
are placed as late as possible within the network, maximizing
sharing of the datapath.

IV. DFF PLACEMENT

The complex asynchronous datapaths greatly complicate
the DFF insertion process. Consider for example the datapath
shown in Fig. 3. The optimal placement of the DFFs cannot be
easily inferred from the datapath topology. In this section, we
propose a CP-SAT based placement methodology for determin-
ing the optimal location of the DFFs. Our methodology consists
of two stages. First, we identify independent datapaths within
an unbalanced logic network, as described in Subsection IV-A.
Next, for each independent datapaths, we formulate a CP-SAT
problem where the timing constraints are satisfied using the
minimum number of DFFs, as described in Subsection IV-B.

A. Independent datapaths
Recall that only a single clocked gate can be placed at

the same stage along a datapath. The AS and SA elements
therefore prevent a DFF from being placed at the same
stage. Furthermore, any timing constraint imposed by a DFF
placed before the AS/SA element, will be dominated by the
timing constraint imposed by the AS/SA element itself at
any location after the AS/SA element. This feature allows
us to represent a network-wide DFF insertion problem as
multiple smaller problems. This partitioning capability brings
two major advantages to the DFF insertion process. First,
while the network-wide DFF insertion problem can be solved
in O(eN ) time, the complexity of a partitioned problem is
O(ekNpath), where N is the network size, Npath ∝ N is
the number of independent datapaths and k is the size of
the largest partition (typically, k ≪ N ). Second, partitioning
facilitates multithreaded processing, allowing faster processing
on a multicore system.

The proposed DFF insertion method is applied to a single
independent datapath constrained by the synchronous gates
at the input and the output, as illustrated in Fig. 5a. The
datapath P can be described as a portion of the logic network
P = (I, A,O), where set A ⊆ GAA contains the AA gates within
the datapath and sets I,O ⊆ GAS ∪ GSA describe, respectively,
the AS and SA gates at the input and output of the datapath.
In Fig. 5a, the three independent paths are
P1 = (I = {A, B, D}, A = {1, 2, 3, 4, 5}, O = {W, X, Y, Z}) ,

P2 = (I = {E}, A = ∅, O = {W}) ,

P3 = (I = {C, F}, A = {6}, O = {Z}) .

B. DFF insertion
After identifying each independent path within the network,

we determine the potential DFF sites for subsequent DFF
insertion. To uniquely identify each potential DFF site, we
define d = (gid, g

o
d, σ(d)), where gid ∈ I ∪A and god ∈ A ∪O

are the fanin and fanout elements of the DFFs and σ(d) is the
stage of the DFF site. We define a chain Q = (dmin, · · · , dmax)
as a sequence of sequentially adjacent DFF locations situated
between dmin and dmax. The examples of DFF sites and a
chain are shown in Fig 5b. For convenience, we define the
length of chain ∆σ(Q) as the stage difference between dmin

and dmax.
For each DFF site, we introduce a binary variable δ(d) equal

to 1 if the DFF is placed at d and 0 otherwise. The problem of
minimizing the number of path balancing DFFs can therefore
be formulated as a CP-SAT problem minimizing∑

d∈P

δ(d). (13)

Several constraints describe the valid placement of the DFFs
within an independent path. First, for each stage, only a single
DFF can be placed along a chain. In Fig. 5b, for example, the
stage σ = 5 has five potential DFF locations, a, b, c, d, and e.
The DFFs here should however satisfy the constraint∑

d∈Q,σd=i

δ(d) ≤ 1. (14)

The combinations of DFF sites satisfying this constraint are



φ 0 1 2 3 0 1 2 3 0 1 2
S 0 0 0 0 1 1 1 1 2 2 2
σ 0 1 2 3 4 5 6 7 8 9 0

B

F4

6

A 5

21

Y

3

E

D

W

X

Z

Ca)

φ 0 1 2 3 0 1 2 3 0 1 2
S 0 0 0 0 1 1 1 1 2 2 2
σ 0 1 2 3 4 5 6 7 8 9 0

B

4

A 5

21

Y

3

D

W

X

Z
a b

ed
(3,Y,7)

(A,5,2)

Q=(dmin=(B,1,3), dmax=(2,3,6)) 
Δσ(Q)=4

c

b)

Fig. 5. Example of an asynchronous datapath within a four-phase network
(n = 4). The black triangles, and black curved shapes represent the AS
and SA elements, respectively. Red circles denote the AA elements. a) Three
independent paths are drawn with red solid, black solid, and black dotted
arrows. b) DFF sites shown as rectangles within the red independent path.
The grey DFF sites represent the chain Q of length n. Diagonally shaded DFF
sites precede the SA gates. DFFs should therefore be placed at these sites.

{a, c, e}, {a, d}, {b, e}, since only these sets do not place
multiple DFFs along any chain. Other conflicting DFF sites
can be found at stages 3 and 6.

Second, the distance between any pair of clocked elements
along a chain should not exceed n in an n-phase system. This
requirement can be formulated as a condition∨

d∈Q,∆σ(Q)=n

δ(d) = 1 (15)

stating that at least one DFF should be placed along any chain
of length n.

Finally, recall that the SA gates should be preceded by an AS
gate to function correctly. Thus, if an SA element is not directly
preceded by an AS gate, a DFF should be placed before the
SA element,

δ(d) = 1 ∀god ∈ GSA, σ(gd) = σd. (16)
The DFF sites before the SA gates are shaded with diagonal
hatch pattern in Fig. 5b.

Equations (13)-(16) constitute a CP-SAT problem where the
conditions (14)-(16) are satisfied with the minimum number
of DFFs (13).

V. EXPERIMENTAL RESULTS

We integrate the DFF placement methodology into the
technology mapping flow for SFQ compound gate circuits.
The SFQ circuits are synthesized with mockturtle using a
database of precomputed compound gate structures [18]. The
circuits are next decomposed into the functional primitives
while removing all DFFs within the circuit. We next apply our
CP-SAT-based phase assignment and DFF insertion procedures
using Google OR-Tools [20].

We apply our mapping flow to synthesize a subset of
EPFL [21] and ISCAS [22] benchmark circuits. For each
benchmark circuit, the total runtime does not exceed 60.64
seconds. Phase assignment is a major component of the total
runtime. Optimal phase assignment has been successfully
determined in all circuits. In most cases, the phase assignment
is completed in under 5 seconds, with the longest runtime
(42 seconds) required by the voter circuit. Naturally, larger

circuits, such as s13207, voter and priority require longer
runtime for phase assignment. Applying our tool to larger
circuits would require additional processing time. Note that
although finding the optimal phase assignment may require
prohibitive runtime, a feasible solution is often available much
earlier. Therefore, by relaxing the optimality requirement, the
our framework can support larger circuits. 2

We first compare our results with dual clocking method [14].
Two experiments are reported where the frequency of the slow
clock is 7 and 12 times smaller than the frequency of the
fast clock. For fair comparison, we use 7 and 12 phases to
equalize the throughput. The results are shown in Table I. Note
that unlike [14], the DFFs within the AND and OR gate are
explicitly counted in our work due to the use of the unclocked
(SA) AND and OR elements. Furthermore, additional elements,
such as pulse repeaters and NDRO flip-flops are needed in
DCM. We therefore focus on the number of JJs, commonly
used in SFQ technology as an area metric. The number of JJs
is reduced, on average, by 59.9% when using 7-phase clocking.
The largest reduction is observed in the priority benchmark
circuit containing many imbalanced paths that require long
chains of path balancing DFFs to be inserted. With multiphase
clocking, these chains can be balanced by approximately 7
times fewer DFFs, contributing to the area savings.

For 12-phase clocking, the area is reduced by 47.5%. Observe
that the smallest reduction in area (and the increase in DFF
count) are observed in circuits with relatively small depth.
These circuits therefore have fewer imbalanced paths that
could benefit from multiphase clocking. Despite relatively large
number of DFFs, we still manage to reduce the total JJ count
due to the use of unclocked elements (AA and SA) supported
by our tool.

The Fig. 6 (left) describes the relationship between the
number of DFFs and the number of phases. The numbers of
DFFs are normalized with respect to a single phase system
mapped with our flow. Consistent with [15] the number of
DFFs reduces with multiple phases. The area savings due
to an additional phase gradually diminishes as more phases
are added. We compare our results against PBMap [11] and
gate compounding [18], the state-of-the-art single-phase SFQ
mapping algorithms. With our mapping flow, two phases are
sufficient, on average, to outperform gate compounding. With
three phases our flow yields fewer DFFs than PBMap. The
Fig. 6 (right) describes the relationship between the circuit area
(expressed as the number of JJs) and the number of phases.
Our flow outperforms PBMap with a single phase, primarily
due to the use of asynchronous gates (e.g., merger instead of
an OR gate). A two-phase network synthesized with our flow
requires fewer JJs than a single-phase compound-gate network.

VI. CONCLUSIONS

RSFQ technology presents a remarkable opportunity to
achieve unprecedented performance and energy efficiency
of computing systems. Realizing its full potential however
requires overcoming major technological issues, including

2Mapping of hyp (the largest circuit in EPFL suite) has been completed
within one hour with only 15 and 20 minutes allocated to phase assignment
and DFF insertion, respectively (not presented due to space constraints).



TABLE I
COMPARISON OF MULTIPHASE CLOCKING WITH DUAL CLOCKING METHOD [13] FOR DIFFERENT THROUGHPUTS

1/7 throughput 1/12 throughput

DCM Multiphase Change Runtime DCM Multiphase Change Runtime
#DFF #JJ #DFF #JJ #DFF #JJ (s) #DFF #JJ #DFF #JJ #DFF #JJ (s)

int2float 117 7’770 217 5’136 +85% –34% 4.42 39 5’140 46 3’939 +18% –23% 4.13
priority 8’562 257’252 3’285 45’094 –62% –82% 54.01 4’225 158’568 1’775 34’524 –58% –78% 30.33
voter 7’204 447’044 2’180 162’804 –70% –64% 60.64 3’732 355’144 1’568 158’520 –58% –55% 48.94
c432 224 10’734 342 5’116 +53% –52% 14.92 118 7’124 240 4’402 +103% –38% 10.14
c880 362 14’658 254 6’190 –30% –58% 7.56 187 9’483 119 5’245 –36% –45% 7.25
c1908 282 13’169 125 3’529 –56% –73% 10.22 144 8’739 69 3’137 –52% –64% 8.78
c3540 776 43’437 589 17’016 –24% –61% 11.83 282 26’897 440 15’973 +56% –41% 9.29
c1355 193 8’739 46 4’515 –76% –48% 4.18 119 6’149 44 4’501 –63% –27% 3.89
s13207 1’795 106’346 1’837 42’382 +2% –60% 27.87 571 60’766 1’082 37’097 +89% –39% 25.90
s5378 645 50’766 808 21’761 +25% –57% 7.87 255 34’053 368 18’681 +44% –45% 7.07
s382 56 4’448 89 2’411 +59% –46% 4.17 9 2’750 48 2’124 +433% –23% 3.93
Geomean 557.04 29’868.20 413.48 11’965.54 –25.8% –59.9% 12.02 227.85 19’565.38 229.57 10’467.10 +0.8% –47.5% 10.03

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

No
rm

al
iz

ed
 #

DF
Fs

Number of phases

PBMap

Gate compounding

Multiphase 0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

No
rm

al
iz

ed
 #

JJ
s

Number of phases

Gate compounding

Multiphase

PBMap

Fig. 6. Normalized average number of DFFs (left) and JJs (right) with different number of phases. The lines in the background represent normalized number
of DFFs and JJs for individual benchmarks.

path balancing. Multiphase clocking can substantially reduce
the path balancing overhead in SFQ systems. Existing path
balancing tools however offer limited support of multiphase
clocking in systems with asynchronous SFQ gates. In this
work, we presented a technology mapping and path balancing
methodology for multiphase SFQ systems based on constraint
programming with satisfiability (CP-SAT). An SFQ logic net-
work is initially synthesized with mockturtle logic synthesis
library. Next, the circuit is decomposed into primitives and the
DFFs are removed from the network. Each primitive gate is
assigned a phase using the CP-SAT while satisfying the special
timing constraints imposed by the unclocked SFQ elements.
Finally, using the novel CP-SAT formulation, the minimum
number of path balancing DFFs satisfying the timing constraints
is determined. In the experimental results, we showed an
average of 59% reduction in the number of JJs when compared
to dual clocking method. Furthermore, with only two phases,
our methodology yields smaller networks than the state-of-the-
art single-phase SFQ mapping techniques.

REFERENCES

[1] K. Likharev, O. Mukhanov, and V. Semenov, “Resistive Single Flux
Quantum Logic for the Josephson-Junction Digital Technology,” Proc.
SQUID, Vol. 85, June 1985.

[2] T. Kawaguchi, M. Tanaka, K. Takagi, and N. Takagi, “Demonstration of
an 8-Bit SFQ Carry Look-Ahead Adder Using Clockless Logic Cells,”
Proc. ISEC, July 2015.

[3] Z. J. Deng, N. Yoshikawa, S. R. Whiteley, and T. Van Duzer, “Data-
Driven Self-Timed RSFQ High-Speed Test System,” IEEE TASC, Vol.
7, No. 4, 1997.

[4] W. Chen et al., “Rapid Single Flux Quantum T-Flip Flop Operating up
to 770 GHz,” IEEE TASC, Vol. 9, No. 2, 1999.

[5] Q. P. Herr, A. D. Smith, and M. S. Wire, “High Speed Data Link between
Digital Superconductor Chips,” Appl. Phys. Lett., Vol. 80, No. 17, 2002.

[6] D. S. Holmes, A. L. Ripple, and M. A. Manheimer, “Energy-Efficient
Superconducting computing—Power Budgets and Requirements,” IEEE
TASC, Vol. 23, No. 3, 2013.

[7] K. Sternickel and A. I. Braginski, “Biomagnetism Using SQUIDs: Status
and Perspectives,” Supercond. Sci. Technol., Vol. 19, No. 3, 2006.

[8] W. H. Tuttlebee, Software Defined Radio: Enabling Technologies, John
Wiley and Sons, 2002.

[9] G. Krylov and E. G. Friedman, Single Flux Quantum Integrated Circuit
Design, Springer, 2022.

[10] P. Bunyk, K. Likharev, and D. Zinoviev, “RSFQ Technology: Physics
and Devices,” Int. J. High Speed Electron. Syst., Vol. 11, No. 01, 2001.

[11] G. Pasandi and M. Pedram, “PBMap: A Path Balancing Technology
Mapping Algorithm for Single Flux Quantum Logic Circuits,” IEEE
TASC, Vol. 29, No. 4, June 2019.

[12] N. Kito, K. Takagi, and N. Takagi, “Logic-Depth-Aware Technology
Mapping Method for RSFQ Logic Circuits With Special RSFQ Gates,”
IEEE TASC, Vol. 32, No. 4, 2021.

[13] G. Pasandi and M. Pedram, “An Efficient Pipelined Architecture for
Superconducting Single Flux Quantum Logic Circuits Utilizing Dual
Clocks,” IEEE TASC, Vol. 30, No. 2, 2020.

[14] G. Pasandi and M. Pedram, “Depth-Bounded Graph Partitioning
Algorithm and Dual Clocking Method for Realization of Superconducting
SFQ Circuits,” ACM JETC, Vol. 17, No. 1, October 2020.

[15] X. Li, M. Pan, T. Liu, and P. A. Beerel, “Multi-Phase Clocking for
Multi-Threaded Gate-Level-Pipelined Superconductive Logic,” Proc.
ISVLSI, pp. 62–67, 2022.

[16] R. Bairamkulov and G. De Micheli, “Compound Logic Gates for Pipeline
Depth Minimization in SFQ Integrated Systems,” Proc. GLSVLSI, 2023.

[17] O. Mukhanov, V. Semenov, and K. Likharev, “Ultimate Performance of
the RSFQ Logic Circuits,” IEEE Trans. Magn., Vol. 23, No. 2, 1987.

[18] R. Bairamkulov, A. Tempia Calvino, and G. De Micheli, “Synthesis of
SFQ Circuits with Compound Gates,” Proc. VLSI-SoC, 2023.

[19] C. E. Leiserson and J. B. Saxe, “Retiming Synchronous Circuitry,”
Algorithmica, Vol. 6, No. 1–6, June 1991.

[20] L. Perron, “Operations Research and Constraint Programming at Google,”
Proc. CP, 2011.

[21] M. Soeken et al., “The EPFL Logic Synthesis Libraries,” arXiv Preprint
arXiv:1805.05121v3, 2018.

[22] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85
Benchmarks: A Case Study in Reverse Engineering,” IEEE Des. Test.
Comput., Vol. 16, No. 3, 1999.


